* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 9
Brain Rules wikipedia , lookup
Caridoid escape reaction wikipedia , lookup
Node of Ranvier wikipedia , lookup
Optogenetics wikipedia , lookup
Aging brain wikipedia , lookup
Electrophysiology wikipedia , lookup
Embodied language processing wikipedia , lookup
History of neuroimaging wikipedia , lookup
Cognitive neuroscience wikipedia , lookup
Endocannabinoid system wikipedia , lookup
Premovement neuronal activity wikipedia , lookup
Nonsynaptic plasticity wikipedia , lookup
Activity-dependent plasticity wikipedia , lookup
Central pattern generator wikipedia , lookup
Haemodynamic response wikipedia , lookup
Neuropsychology wikipedia , lookup
Neuroplasticity wikipedia , lookup
Neural engineering wikipedia , lookup
Holonomic brain theory wikipedia , lookup
Metastability in the brain wikipedia , lookup
Development of the nervous system wikipedia , lookup
Neuromuscular junction wikipedia , lookup
Channelrhodopsin wikipedia , lookup
Microneurography wikipedia , lookup
Single-unit recording wikipedia , lookup
Feature detection (nervous system) wikipedia , lookup
Evoked potential wikipedia , lookup
Synaptogenesis wikipedia , lookup
Biological neuron model wikipedia , lookup
Synaptic gating wikipedia , lookup
End-plate potential wikipedia , lookup
Clinical neurochemistry wikipedia , lookup
Neuroregeneration wikipedia , lookup
Chemical synapse wikipedia , lookup
Circumventricular organs wikipedia , lookup
Nervous system network models wikipedia , lookup
Neurotransmitter wikipedia , lookup
Molecular neuroscience wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
The Nervous System Chapter 9 Objectives • To identify the basic structure of a neuron. • To explain the main components of the nervous system. • To compare and contrast the central nervous system and the peripheral nervous system. • To differentiate between the somatic and autonomic nervous systems. Functions of the Nervous System • Sensory input (gathering information): to monitor changes occurring inside and outside the body o Changes = stimuli • Integration: to process and interpret sensory input and decide if action is needed • Motor output: a response to integrated stimuli o The response activates muscles or glands Functions of the Nervous System Structure of a Neuron • Neuron= Nerve Cell • Reacts to physical/chemical changes in surroundings • Transmit information through nerve impulses to other neurons and other cells. Anatomy of a neuron video • https://www.youtube.com/watch?v=ob5U8zPbAX4 Nervous Tissue • Neuroglia o Definition: all support cells in the CNS (Central nervous system) o Function: to support, insulate, and protect neurons • Neurons o Function: transmit messages o Major regions of neurons • Cell body – nucleus and metabolic center of the cell • Processes – fibers that extend from the cell body o Dendrites – conduct impulses toward the cell body o Axons – conduct impulses away from the cell body CNS vs. PNS • CNS (Central Nervous System): o Brain o Spinal Cord • PNS (Peripheral Nervous System): o Cranial nerves o Spinal Nerves PNS • Contains a sensory division and a motor division. • Sensory Division: o Contains sensory receptors that convert info into a nerve impulse and transmit it back to the CNS to make sense of it. o Monitors environmental changes such as light and sound o Detects changes in homeostasis ( ex: temperature, oxygen level) Motor Division • Utilize peripheral neurons to carry impulses from the CNS to an effector which will cause a response o Ex: muscle contraction, gland secretion, etc. Motor Division • Somatic Nervous System: o Controls skeletal muscle and voluntary movement. • Autonomic Nervous System: o Controls effectors that are involuntary • Ex: heart, smooth muscle, certain glands Objectives • To identify and explain the 3 different structures of neurons. • To compare and contrast sensory, motor, and interneurons and explain a general pathway. • To determine the functions of the 5 types of neuroglia. Types of Neurons Multipolar: o Many processes stemming from cell body. o *most neurons in brain and spinal cord are multipolar Types of Neurons Bipolar: o Only two processes (one at each end. o *found in eyes, nose, ears.. Types of Neurons Unipolar: o One single process extending from cell body. o one side of axon is the peripheral process associated with body part, other side is the central process that enters brain or spinal cord. o Cell bodies create a tissue mass called ganglia. Types of Neurons Neuron Classification • Sensory Neurons (afferent): o Carry impulses from PNS to CNS o Contain “receptor ends” at the tips of dendrites o Changes outside the body stimulate receptor ends triggering an impulse o *Most are unipolar Neuron Classification • Interneurons (association): o Completely in brain or spinal cord. o Link neurons together. o *multipolar Neuron Classification • Motor Neurons (efferent): o carry impulses out of brain or spinal cord to the effector and stimulate response. General Pathway Neuroglial Cells *More numerous than neurons, support neurons in different ways. • Microglial Cells: o Phagocytize bacterial cells and cellular debris • Oligodendrocytes: o Provide insulating layers of myelin • Astrocytes: o o o o Provide structural support join parts (ex: neuronàcapillary) help regulate concentrations of nutrients and ions Form scar tissue in the CNS • Ependymal Cells: o Forms membrane that covers specialized brain parts and forms inner linings within the brain and spinal canal • Schwann cells: o Forms myelin sheath around axons. Nervous Tissue: Support Cells Nervous Tissue: Support Cells Nervous Tissue: Support Cells Nervous Tissue: Support Cells Nervous Tissue: Support Cells Neuroglial Cells Myelin • A lipid that sometimes coats axons o White matter = myelinated axons in CNS o Gray matter = cell bodies & unmyelinated axons in CNS • Produced by some neuroglial cells • Insulates neurons & increases efficiency of nerve impulses Objectives • To explain how a nerve impulse occurs. • To determine what types of stimuli elicit an action potential. • To explain different things that inhibit an action potential. • To understand components of a neuron that contribute to impulse velocity. Cell Membrane Potential • The membrane is electrically charged, “polarized” due to Na+ and K+ ions o Greater concentration of sodium ions outside and potassium ions inside. o Potassium ions pass through more easily o Active transport (sodium/potassium pump) maintains balance • This is essential in the propagation of a nerve impulse. Resting Potential • When a nerve cell membrane is undisturbed, the membrane remains polarized staying more negative on the inside and positive on the outside. Threshold Potential • If the nerve cell detects a change in light/temp/ pressure it effects the resting potential and the membrane begins depolarizing. o Sodium channels open and + ions flow in, making the inside less negative. • Change in potential is proportional to the intensity of the stimulation. • Stimulation + more stimulation before initial stimulation subsides is called summation. • Once the threshold is reached, an action potential occurs. Action Potential • Definition: change in neuron membrane polarization and return to resting state • Nerve Impulse: chain of action potentials from neuron to neuron Action Potential • Depolarization: a decrease in membrane potential • Repolarization: increase in membrane potential, causes membrane to become negatively charged again Action Potential 1. Stimuli (temperature, light, pressure, other neurons) decreases membrane potential 2. When threshold potential (~55 mV) is reached, stimulus is big enough to cause neuron to send a signal. Action Potential Continued 3. Reaching threshold potential triggers Na+ and K+ channels (located in nodes of Ranvier) to open and equalize charges 3a. Na+ channels open faster, causing rapid depolarization. 3b. As K+ channels open slowly, membrane becomes more polarized, Na+ rushes out. 4. Further parts of axon are triggered and action potentials propagate down length of axon causing nerve impulse. 5. Results in neurotransmitters being released into synapse Action Potential Action potential video • https://www.youtube.com/watch?v=ZAmUjvgoO0A • https://www.youtube.com/watch?v=HnKMB11ih2o Impulse Conduction • Unmyelinated nerve = impulse conducted over the entire surface. • Myelin insulates and prevents ion flow, would prevent conduction if it were continuous and didn’t have the nodes of ranvier. • Myelinated nerve= impulse jumps from node to node and creates a saltatory response and is much faster than unmyelinated. All-‐‑or-‐‑None • Nerve impulses create an “all or none response”. • Once the stimulus reaches threshold, it generates an action potential. Objectives • Identify the different components of a reflex arc. • Explain different autonomic reflexes found throughout the body. Reflexes • Ordinarily, a receptor sends a signal to the brain where the brain coordinates a response. • What happens when you touch something hot? Reflex Arcs • Reflex: a rapid, predictable, and involuntary response to a stimulus • Reflex Arc: Direct route from sensory neurons, to an interneuron, to an effector. o Interneuron: neuron between the primary sensory neuron and the final motor neuron. • A reflex is a rapid action that happens without thought and does not involve the brain. Reflex Arc 1) Receptor- sense organ in skin, muscle, or other organ 2) Sensory Neuron- carries impulse towards CNS from receptor 3) Interneuron- carries impulse within CNS 4) Motor Neuron- carries impulse away from CNS to effector 5) Effector- structure by which animal responds (muscle, gland, etc). Steps in a Reflex Arc 1. Stimulus: A receptor receives a stimulus 2. Afferent Pathway: Receptor sends message to integrating center (CNS) via a sensory neuron 3. Integration: CNS makes correct connection between sensory neuron and motor neuron; usually involves an interneuron 4. Efferent Pathway: Motor neuron carries message from CNS to effector 5. Response: Effector carries out appropriate response Reflex Arc Reflex arc video • https://www.youtube.com/watch?v=wLrhYzdbbpE Types of Reflexes • Somatic reflexes: Activation of skeletal muscle o Example: when you move your hand away from a hot stove • Autonomic reflexes: Regulation of smooth muscle; regulation of cardiac muscle, regulation of glands o Example: Heart rate and blood pressure regulation; digestive system regulation; regulation of fluid balance NeurotransmiLers • Definition: chemicals that transmit signals from neurons to a target cell across a synapse • NTs can be either excitatory (excite) or inhibitory (inhibit) • Each neuron generally synthesizes and releases a single type of neurotransmitter Neurotransmitter Role in the Body Acetylcholine Excitatory. Used by spinal cord neurons to control muscles; used by neurons in the brain to regulate memory. In most instances, acetylcholine is excitatory. Dopamine Inhibitory. Produces feelings of pleasure when released by the brain reward system. GABA (gamma-aminobutyric acid) The major inhibitory neurotransmitter in the brain. Glutamate The most common excitatory neurotransmitter in the brain. Glycine Inhibitory. Used mainly by neurons in the spinal cord. Norepinephrine Mostly excitatory, can be inhibitory in a few brain areas. Acts as both neurotransmitter and hormone. In PNS, part of fight or flight response. it is part of the flight-or-flight response. In brain, regulates normal brain processes. Serotonin Inhibitory. Involved in many functions including mood, appetite, and sensory perception. Drugs Interfere with Neurotransmission • Drugs can affect synapses at a variety of sites and in a variety of ways, including: o Increasing number of impulses (firing of nerves) o Release NT from vesicles with or without impulses o Block reuptake of neurotransmitters or block receptors o Produce more or less NT o Prevent vesicles from releasing NT Three Drugs (of many) which affect Neurotransmission Methamphetamine Nicotine Alcohol Methamphetamine • Meth alters Dopamine transmission in two ways: o Enters dopamine vesicles in axon terminal causing release of NT o Blocks dopamine transporters taking dopamine back into the transmitting neuron • Result: More dopamine in the synaptic cleft o This causes neurons to fire more often than normal resulting in a euphoric feeling. Methamphetamine • Problems… o After the drug wears off, dopamine levels drop, and the user “crashes”. The euphoric feeling will not return until the user takes more methamphetamine. o Long-term use of meth causes dopamine axons to wither and die. o Note that cocaine also blocks dopamine transporters, thus it works in a similar manner. Nicotine • Similar to methamphetamine and cocaine, nicotine increases dopamine release in a synapse. • However, the mechanism is slightly different • Nicotine binds to receptors on the presynaptic neuron Nicotine • Nicotine binds to the presynaptic receptors exciting the neuron to fire more action potentials causing an increase in dopamine release. • Nicotine also affects neurons by increasing the number of synaptic vesicles released. Alcohol • Alcohol has multiple effects on neurons. It alters neuron membranes, ion channels, enzymes, and receptors. • It binds directly to receptors for acetylcholine, serotonin, and gamma aminobutyric acid (GABA), and gluatmate. GABA and the GABA receptor • GABA is a neurotransmitter that has an inhibitory effect on neurons. • When GABA attaches to its receptor on the postsynaptic membrane, it allows Cl ions to pass into the neuron. • This hyperpolarizes the postsynaptic neuron to inhibit transmission of an impulse. Alcohol and the GABA Receptor • When alcohol enters the brain, it binds to GABA receptors and amplifies the hyperpolarization effect of GABA. • The neuron activity is further diminished. • This accounts for some of the sedative affects of alcohol. The Adolescent Brain and Alcohol • The brain goes through dynamic change during adolescence, and alcohol can can seriously damage long and short-term growth processes. • Frontal lobe development and the refinement of pathways and connections continue until age 16, and a high rate of energy is used as the brain matures until age 20. • Damage from alcohol at this time can be long-term and irreversible. The Adolescent Brain and Alcohol • In addition, short-term or moderate drinking impairs learning and memory for more in youth than adults. • Adolescents need only drink half as much as adults to suffer the same negative effects. Drugs that Influence NeurotransmiLers Change in Neurotransmission Effect on Neurotransmitter release or availability Drug that acts this way increase the number of impulses increased neurotransmitter release nicotine, alcohol, opiates release neurotransmitter from vesicles with or without impulses increased neurotransmitter release amphetamines methamphetamines release more neurotransmitter in response to an impulse increased neurotransmitter release nicotine block reuptake more neurotransmitter present in synaptic cleft cocaine amphetamine produce less neurotransmitter less neurotransmitter in synaptic cleft probably does not work this way prevent vesicles from releasing neurotransmitter less neurotransmitter released No drug example block receptor with another molecule no change in the amount of neurotransmitter released, or neurotransmitter cannot bind to its receptor on postsynaptic neuron LSD caffeine CNS (Brain Structure) Regions of the Brain Cerebral Hemispheres (Cerebrum) • Structure of cerebrum: Paired (left and right) superior parts of the brain • Function of cerebrum: Higher brain function (thought and action) Regions of the Brain: Cerebrum Four (Main) Lobes of the Cerebrum • Frontal lobe: problem solving, judgment, motor function (Primary Motor Area), speech (Broca’s Area) • Parietal lobe: sensation, handwriting, body position (Primary Somatic Sensory Area) • Occipital lobe: visual processing system • Temporal lobe: memory and hearing Regions of the Brain: Cerebrum Regions of the Brain: Diencephalon Regions of the Brain: Diencephalon Diencephalon • Structure: sits on top of brain stem; enclosed by cerebral hemispheres Diencephalon Three parts • Thalamus: relay station for sensory impulses • Hypothalamus: autonomic nervous system center; involved in emotion o Helps regulate body temperature o Controls water balance o Regulates metabolism • Epithalamus: houses the pineal gland (involved in sleep); forms CSF (Cerebrospinal fluid) Regions of the Brain: Diencephalon Brain Stem Structure: Attached to the spinal cord • Midbrain o Mostly composes of tracts of nerve fibers o Function: reflex center for vision and hearing • Pons o Structure: bulging center part of the brain stem o Function: control of breathing • Medulla Oblongata o Structure: most inferior part of the brain stem; merges into spinal cord o Functions: heart rate control, blood pressure regulation, breathing, swallowing, vomiting Regions of the Brain: Brain Stem Cerebellum • Structure: looks like a “little cerebrum”, sits inferior to cerebrum, posterior to brain stem • Function: provides involuntary coordination of body movements Regions of the Brain: Cerebellum Ventricles • Structure: four chambers within the brain filled with cerebrospinal fluid o Lateral Ventricles: within Cerebrum o Third Ventricle: in Diencephalon o Fourth Ventricle: between pons and cerebellum Ventricles • Functions 1. Transport of waste and nutrients 2. Protects cerebrum from trauma 3. Contain signaling molecules that direct development and function Spinal Cord Anatomy and PNS Spinal Cord – General Info • Structure: extends from foramen magnum of skull to the first two lumbar vertebra Spinal Cord Anatomy Spinal Cord Anatomy • Internal gray matter – mostly cell bodies; surrounds central canal o Central canal is filled with cerebrospinal fluid • Exterior white matter - axons Spinal Cord Anatomy Peripheral Nervous System (PNS) • Definition: nerves and ganglia outside the central nervous system • Ganglia: mass of nerve cell bodies • Nerve: bundle of neuron fibers PNS: Classification of Nerves • Mixed nerves: both sensory and motor fibers • Sensory (afferent) nerves: carry impulses toward the CNS • Motor (efferent) nerves: carry impulses away from the CNS PNS: Cranial Nerves • Definition: 12 pairs of nerves that serve the head and neck PNS: Cranial Nerves I Olfactory nerve – sensory for smell II Optic nerve – sensory for vision III Oculomotor nerve – motor fibers to eye muscles IV Trochlear – motor fiber to eye muscles V Trigeminal nerve – sensory for the face; motor fibers to chewing muscles • VI Abducens nerve – motor fibers to eye muscles • VII Facial nerve – sensory for taste; motor fibers to the face • VIII Vestibulococlear nerve – sensory for balance and hearing • • • • • PNS: Cranial Nerves • IX Glossopharyngeal nerve – sensory for taste; motor fibers to the pharynx • X Vagus nerves – sensory and motor fibers for pharynx, larynx, and viscera • XI Accessory nerve – motor fibers to neck and upper back • XII Hypoglossal nerve – motor fibers to tongue Spinal Nerves • Structure: formed by the combination of the ventral and dorsal roots of the spinal cord o 31 pairs of spinal nerves arise from the spinal cord • Cauda equina: collection of spinal nerves at the inferior end Autonomic Nervous System • Definition: involuntary nervous system • Function: regulates activities of cardiac and smooth muscles and glands • Two subdivisions o Sympathetic divisions o Parasympathetic division Sympathetic Division (E) • Sympathetic Function – “fight or flight” o Response to unusual stimulus o Takes over to increase activities o Remember the “E” division: Exercise, excitement, emergency, and embarrassment • Neurotransmitters o Norepinephrine o Epinephrine Parasympathetic Division (D) • Parasympathetic function – “housekeeping” activities o Conserves energy o Maintains daily necessary body functions o Remember as the “D” division: digestion, defecation, and diuresis • Neurotransmitter o Acetylcholine Difference between Somatic and Autonomic Nervous System • Nerves o Somatic: one motor neuron o Autonomic: preganglionic and postganglionic nerves • Effector organs o Somatic: skeletal muscle o Autonomic: smooth muscle, cardiac muscle, and glands • Neurotransmitters o Somatic: acetylcholine o Autonomic: acetylcholine, epinephrine, or norepinephrine Review video (show on review day!!) • https://www.youtube.com/watch?v=UabDiuTtU0M