Download Chapter 9 Sleep and Biological Rhythms

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Functional magnetic resonance imaging wikipedia , lookup

Connectome wikipedia , lookup

Haemodynamic response wikipedia , lookup

Aging brain wikipedia , lookup

Electroencephalography wikipedia , lookup

Activity-dependent plasticity wikipedia , lookup

Brain–computer interface wikipedia , lookup

Theta wave wikipedia , lookup

Neuroeconomics wikipedia , lookup

Lunar effect wikipedia , lookup

Feature detection (nervous system) wikipedia , lookup

Neuroplasticity wikipedia , lookup

Brain wikipedia , lookup

Brain Rules wikipedia , lookup

Dream wikipedia , lookup

Nervous system network models wikipedia , lookup

Synaptic gating wikipedia , lookup

Premovement neuronal activity wikipedia , lookup

Development of the nervous system wikipedia , lookup

Neuroanatomy wikipedia , lookup

Biology of depression wikipedia , lookup

Circumventricular organs wikipedia , lookup

Neuroscience in space wikipedia , lookup

Neural oscillation wikipedia , lookup

Optogenetics wikipedia , lookup

Channelrhodopsin wikipedia , lookup

Shift work wikipedia , lookup

Metastability in the brain wikipedia , lookup

Circadian rhythm wikipedia , lookup

Sleep wikipedia , lookup

Delayed sleep phase disorder wikipedia , lookup

Sleep apnea wikipedia , lookup

Insomnia wikipedia , lookup

Neural correlates of consciousness wikipedia , lookup

Neuroscience of sleep wikipedia , lookup

Sleep and memory wikipedia , lookup

Obstructive sleep apnea wikipedia , lookup

Sleep deprivation wikipedia , lookup

Sleep paralysis wikipedia , lookup

Sleep medicine wikipedia , lookup

Rapid eye movement sleep wikipedia , lookup

Neuropsychopharmacology wikipedia , lookup

Effects of sleep deprivation on cognitive performance wikipedia , lookup

Start School Later movement wikipedia , lookup

Clinical neurochemistry wikipedia , lookup

Transcript
Chapter 9
Sleep and Biological Rhythms
Stages of sleep
►
►
►
Most sleep research conducted in a sleep laboratory
Attaches electrodes to measure EEG, EMG (electromyogram; to
measure muscle activity), and EOG (electro-oculogram; to measure
eye movements)
EEG stages
 Awake
Alpha activity – smooth electrical activity of 8-12 Hz recorded from the brain;
state of relaxation
► Beta activity – irregular electrical activity of 13-30 Hz recorded from the brain;
state of arousal
►
 Stage 1 sleep
Transition b/t sleep and wakefulness
► Theta activity – EEG activity of 3.5-7.5 Hz that occurs intermittently during early
stages of slow-wave sleep and REM sleep
►
Stages of sleep
►
EEG stages
 Stage 2 sleep
►
EEG is generally irregular but contains periods of theta activity, sleep spindles and K
►
Some experimenters believe that sleep spindles represent the activity of a mechanism that
is involved in keeping a person asleep
complexes
 Stage 3 & 4 sleep
►
Delta activity – regular, synchronous electrical activity of less than 4 Hz recorded from the
brain; occurs during the deepest stages of slow-wave sleep
 REM sleep – a period of desynchronized EEG activity during sleep, at which time
dreaming, rapid eye movements, and muscular paralysis occur
►
Dreaming during this state; tend to be narrative in form
 Stages 1-4 referred to as non-REM sleep
 Stages 3-4 referred to as slow-wave sleep
 During rest of the night subject will alternate b/t periods of non-REM sleep and REM
sleep, each cycle about 90 min long, containing ~20-30 min of REM sleep
Stages of sleep
►
►
►
►
The fact that REM sleep occurs at regular 90-minute intervals suggests
that a brain mechanism alternately causes REM and slow-wave sleep
The cyclic nature of REM sleep appears to be controlled by a “clock” in
the brain that also controls an activity cycle that continues through
waking
Basic rest-activity cycle – a 90-mn cycle (in humans) of waxing and
waning alertness; controlled by a biological clock in the caudal brain
stem; controls cycles of REM sleep and slow-wave sleep
REM sleep also includes lack of muscle tonus, penile erection or vaginal
secretion
Mental activity during sleep
►
►
►
Cerebral blood flow in the human brain during REM sleep is high in the
visual association cortex but low in the inferior frontal cortex
(concerned with planning, strategies)
Eye movements during REM sleep may be related to the visual imagery
that occurs while we dream
Particular brain mechanisms that become active during a dream are
those that would become active if the events in the dream were
actually occurring
Disorders of sleep
►
Insomnia
 Affects ~20% of pop
 One of the most important causes of insomnia is sleeping medication,
because of developed tolerance and withdrawal symptoms
►
Drug dependency insomnia – caused by the side effects of ever-increasing doss
of sleeping medications
 Unreliability of self-reports; sleep studies help doctors prescribe correctly
 Sleep apnea – cessation of breathing while sleeping; mostly caused by an
obstruction of the airway that can be corrected surgically or by a breathing
mask
►
Narcolepsy
 Characterized by periods of irresistible sleep, attacks of cataplexy
(complete paralysis that occurs during waking), sleep paralysis (paralysis
occurring before falling asleep), and hypnagogic hallucinations (vivid
dreams that occur just before a person falls asleep)
 Produced by a brain abnormality that disrupts the neural mechanisms that
control various aspects of sleep and arousal
Disorders of sleep
►
Narcolepsy con’t
 Human narcolepsy is a genetic disorder that is influenced by unknown
env’tal factors
 There is a mutation of the gene that codes for a receptor for the peptide
hypocretin (aka orexin), which is produced by neurons in the
hypothalamus
►
REM sleep behavior disorder
 A neurological disorder in which the person does not become paralyzed
during REM sleep and thus acts out dreams
 Appears to be a neurodegenerative disorder with at least some genetic
component
Why do we sleep?
►
Functions of slow-wave sleep
 Researchers believe the primary function of slow-wave sleep is to permit
the brain to rest
 Essential for survival (even seen in species where it would seem dangerous
to sleep)
 Effects of sleep deprivation
Sleep deprivation has not been shown to be necessary for the body to function
properly
► However, cognitive functions are affected
► Fatal familial insomnia – characterized by progressive insomnia, results in
damage to the thalamus
► Lab rats forced to remain awake eat more, but lose weight (due to increased
metabolism) and eventually die
►
 Effects of exercise on sleep
►
No changes in slow-wave or REM sleep in subjects on bed-rest
Why do we sleep?
►
Functions of slow-wave sleep con’t
 Effects of mental activity on sleep
►
►
Increased mental activity causes subjects to experience increased slow-wave
(especially Stage 4) sleep
Functions of REM sleep
 After several days of REM sleep deprivation, subjects would show a
rebound phenomenon (increase of normal percentage of REM sleep) when
permitted to sleep normally
 The highest proportion of REM sleep is seen during the most active phase
of brain development
So why do adults have REM sleep then?
► Maybe to facilitate modest brain changes due to learning
►
 Studies with lab animals demonstrate that REM sleep does indeed facilitate
learning
 In humans, learning can affect the amount of REM sleep a person obtains
Chemical control of sleep
►
►
►
Since sleep is regulated, the body must either produce a sleeppromoting substance or a wakefulness-promoting substance
Suggested that adenosine may play a role in the control of sleep, by
increasing the amount of delta activity during sleep
Neural control of arousal
 Acetylcholine
ACh antagonists decrease EEG signs of cortical arousal while agonists increase
them
► Activation of cerebral cortex and increased release of ACh stimulated by a group
of ACh neurons located in basal forebrain
►
 Norepinephrine
Locus coeruleus – a dark-colored group of NE cell bodies located in the pons
near the rostral end of the floor of the 4th ventricle; involved in arousal and
vigilance
► NE increases an animal’s ability to pay attention to stimuli in the env’t
►
Activity of NE neurons in LC
Chemical control of sleep
►
Neural control of arousal con’t
 Serotonin
► Most
of the brain’s 5-HT neurons are located in raphe nuclei, which is
located in the medullary and pontine regiond of the reticular formation
► Stimulation of the neurons causes locomotion and cortical arousal
► 5-HT neurons in raphe nuclei activated highly during awake states, and
less during deep stages of sleep
5-HT neurons in raphe nuclei
Activity of 5-HT neurons in raphe
nuclei
Chemical control of sleep
 Histamine
Cell bodies of histaminergic neurons located in tuberomammillary nucleus of the
hypothalamus
► Project to cerebral cortex, and increase cortical activation and arousal
►
 Hypocretin
Cell bodies of neurons that secrete hypocretin are located in the lateral
hypothalamus and terminate in several regions involved in arousal
► Has an excitatory, wakefulness-promoting effect
►
Chemical control of sleep
►
Neural control of slow-wave sleep
 One region important: ventrolateral preoptic area (VLPA), rostral to the
hypothalamus; destruction of this area produced total insomnia in rats
 Contains inhibitory GABA-secreting neurons and these neurons send their
axons to the tuberomammillary nucleus, dorsal pons, raphe nuclei, and
locus coeruleus
 Also receives inhibitory info from these regions, creating a flip-flop effect of
either awake or sleep states
►
Neural control of REM sleep
 In lab animals, REM sleep also creates PGO waves (pons, genicultae,
occipital) in addition to EEG activity, muscular paralysis, etc
 PGO waves are bursts of phasic electrical activity originating in the pons
followed by activity in the LGN and visual cortex
 REM sleep controlled by mechanisms located within the pons:
►
The executive mechanism
 ACh neurons located in dorsolateral pons (peribrachial area) trigger the onset of REM
sleep
Chemical control of sleep
►
Neural control of REM sleep (con’t)
 The executive mechanism
Activation of single neurons in this area are related to the sleep cycle
► Axons of these neurons project to the reticular formation, forebrain, brain stem
regions that control eye movements
► Carbachol, an ACh receptor agonist, when infused into the reticular formation,
produces REM sleep in lab animals
► Magnocellular nucleus – locaed in the medulla; involved in the muscular
paralysis during REM sleep
►
 5-HT and NE
►
Activity of neurons in the dorsal raphe nucleus and locus coeruleus normally
inhibits REM sleep and a reduction in firing rate may trigger a bout of REM sleep
Biological clocks
Daily rhythms in behavior and physiological processes called circadian rhythms;
some are passive responses to changes in illumination, while others are
controlled by mechanisms within the organism
► 24 hour period for plants and animals
► Zeitgeber – a stimulus (usually the light of dawn) that resets the biological
clock that is responsible for circadian rhythms
► Superchiasmatic nucleus – situated atop the optic chiasm; contains a biological
clock that is responsible for organizing many of the body’s rhythms
►
 activity, drinking, hormonal secretion, sleep cycles, feeding
 Receive projections from the retina (retinohypothalamic pathway)
 Photoreceptors provide SCN with info about light levels (via use of the chemical
melanopsin)
 SCN also receives light info from Intergeniculate leaflet (part of the LGN)
 Neurons of the SCN project to the midbrain, hypothalamic nuclei and others in order
to control eating, drinking, sleep cycles, and hormone secretion
Biological clocks
►
►
►
SCN contains a biological clock
Evidence suggests that each neuron in the SCN contains a “clock”
Clock “ticking” is provided by the production and breakdown of a
protein that acts back on the genes responsible for their own
production; thus creating a cycle
Control of seasonal rhythms
►
The pineal gland and melatonin
 Pineal gland – sits on top of the midbrain; produces melatonin and plays a
role in circadian and seasonal rhythms
 Melatonin is secreted at night and controls hormones, physiological
processes and behaviors that show seasonal variations (e.g. hibernation)
Changes in circadian rhythms
►
Shift work and jet lag
 When people abruptly change their daily rhythms of activity, their internal
circadian rhythms become desynchronized with those in the external env’t
 E.g. jet lag