* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Dorsolateral Prefrontal Association Cortex
Electromyography wikipedia , lookup
Nervous system network models wikipedia , lookup
Development of the nervous system wikipedia , lookup
Emotional lateralization wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
Metastability in the brain wikipedia , lookup
Embodied cognitive science wikipedia , lookup
Neuroesthetics wikipedia , lookup
Neuromuscular junction wikipedia , lookup
Executive functions wikipedia , lookup
Synaptogenesis wikipedia , lookup
Proprioception wikipedia , lookup
Human brain wikipedia , lookup
Stimulus (physiology) wikipedia , lookup
Caridoid escape reaction wikipedia , lookup
Microneurography wikipedia , lookup
Time perception wikipedia , lookup
Cortical cooling wikipedia , lookup
Aging brain wikipedia , lookup
Central pattern generator wikipedia , lookup
Neuroplasticity wikipedia , lookup
Environmental enrichment wikipedia , lookup
Neuroeconomics wikipedia , lookup
Evoked potential wikipedia , lookup
Eyeblink conditioning wikipedia , lookup
Muscle memory wikipedia , lookup
Anatomy of the cerebellum wikipedia , lookup
Neural correlates of consciousness wikipedia , lookup
Cognitive neuroscience of music wikipedia , lookup
Synaptic gating wikipedia , lookup
Embodied language processing wikipedia , lookup
Feature detection (nervous system) wikipedia , lookup
Premovement neuronal activity wikipedia , lookup
How You Do What You Do 1. 2. 3. The sensorimotor system is hierachically organized Motor output is guided by sensory input Learning can change the nature and locus of sensorimotor control 1. Hierarchical organization ◦ Association cortex at the highest level, muscles at the lowest i.e from general goals (cortical level) to specific details of action (lower levels). ◦ Parallel structure – signals flow between levels over multiple paths ◦ Information flow is down, while in the Sensory system informtion flows through the hierarchy. 2. Motor output guided by sensory input ◦ Sensory feedback plays an important role in the control of movement (exception: ballistic movements). 3. Learning (experience) changes the nature and locus of sensorimotor control. ◦ E.g. from Conscious behavior to automatic. From conscious control (cortical level) to "Automatic Pilot" (lower levels).    Sensory information is integrated in Association cortex. Two Major areas of Sensorimotor Association Cortex are:◦ Posterior parietal association cortex ◦ Dorsolateral prefrontal association cortex Each composed of several different areas with different functions  This cortex receives input from ◦ ◦ ◦         The somatosensory system, The visual system and The auditory system. This information specifies the initial conditions for the programming of action: The original position of the body parts to be moved. The position of external objects Damage to the posterior parietal cortex causes Apraxia and Contralateral neglect. Apraxia: difficulty in executing a movement when ordered to do so, but able to do it when not thinking about it. Lesion is often on the left side. Contralateral Neglect: Patient does not respond to sensory stimulation from the side opposite to the lesion of the parietal cortex (usually on the right side). The output of the Posterior Parietal Association Cortex goes to the Dorsolateral Prefrontal Association Cortex, and to the Frontal Eye Field (Fig. 8.2).             This cortex receives input from The somatosensory system, The visual system and The auditory system. This information specifies the initial conditions for the programming of action: The original position of the body parts to be moved. The position of external objects Damage to the posterior parietal cortex causes Apraxia and Contralateral neglect. Apraxia: difficulty in executing a movement when ordered to do so, but able to do it when not thinking about it. Lesion is often on the left side. Contralateral Neglect: Patient does not respond to sensory stimulation from the side opposite to the lesion of the parietal cortex (usually on the right side). The output of the Posterior Parietal Association Cortex goes to the Dorsolateral Prefrontal Association Cortex, and to the Frontal Eye Field (Fig. 8.2).  Integrates information about ◦ Body part location ◦ External objects   Receives visual, auditory, and somatosensory information Outputs to motor cortex   Apraxia – disorder of voluntary movement – problem only evident when instructed to perform an action – usually a consequence of damage to the area on the left Contralateral neglect – unable to respond to stimuli contralateral to the side of the lesion - usually seen with large lesions on the right    Input from posterior parietal cortex Output to secondary motor cortex, primary motor cortex, and frontal eye field Evaluates external stimuli and initiates voluntary reactions – supported by neuronal responses Input mainly from association cortex  Output mainly to primary motor cortex  At least 7 different areas ◦ 2 supplementary motor areas  SMA and preSMA ◦ 2 premotor areas  dorsal and ventral ◦ 3 cingulate motor areas     Subject of ongoing research May be involved in programming movements in response to input from dorsolateral prefrontal cortex Many premotor neurons are bimodal – responding to 2 different types of stimuli Precentral gyrus of the frontal lobe  Major point of convergence of cortical sensorimotor signals  Major point of departure of signals from cortex  Somatotopic – more cortex devoted to body parts which make many movements  Motor homunculus Control of hands involves a network of widely distributed neurons  Stereognosis – recognizing by touch – requires interplay of sensory and motor systems  Some neurons are direction specific – firing maximally when movement is made in one direction     Interact with different levels of the sensorimotor hierarchy Coordinate and modulate May permit maintenance of visually guided responses despite cortical damage 10% of brain mass, > 50% of its neurons  Input from 1° and 2° motor cortex  Input from brain stem motor nuclei  Feedback from motor responses  Involved in fine-tuning and motor learning  May also do the same for cognitive responses     A collection of nuclei Part of neural loops that receive cortical input and send output back via the thalamus Modulate motor output and cognitive functions  2 dorsolateral ◦ Corticospinal ◦ Corticorubrospinal  2 ventromedial ◦ Corticospinal ◦ Cortico-brainstem-spinal tract  Both corticospinal tracts are direct    Most synapse on interneurons of spinal gray matter Corticospinal - descend through the medullary pyramids, then cross ◦ Betz cells – synapse on motor neurons projecting to leg muscles ◦ Wrist, hands, fingers, toes Corticorubrospinal – synapse at red nucleus and cross before the medulla ◦ Some control muscles of the face ◦ Distal muscles of arms and legs   Corticospinal ◦ Descends ipsilaterally ◦ Axons branch and innervate interneuron circuits bilaterally in multiple spinal segments Cortico-brainstem-spinal ◦ Interacts with various brain stem structures and descends bilaterally carrying information from both hemispheres ◦ Synapse on interneurons of multiple spinal segments controlling proximal trunk and limb muscles      Dorsolateral one direct tract, one that synapses in the brain stem Terminate in one contralateral spinal segment Distal muscles Limb movements       Ventromedial one direct tract, one that synapses in the brain stem More diffuse Bilateral innervation Proximal muscles Posture and whole body movement Motor units – a motor neuron + muscle fibers, all fibers contract when motor neuron fires  Number of fibers per unit varies – fine control, fewer fibers/neuron  Muscle – muscle fibers bound together by a tendon       Acetylcholine released by motor neurons at the neuromuscular junction causes contraction Motor pool – all motor neurons innervating the fibers of a single muscle Fast muscle fibers – fatigue quickly Slow muscle fibers – capable of sustained contraction due to vascularization Muscles are a mix of slow and fast     Flexors – bend or flex a joint Extensors – straighten or extend Synergistic muscles – any 2 muscles whose contraction produces the same movement Antagonistic muscles – any 2 muscles that act in opposition  Golgi tendon organs ◦ Embedded in tendons ◦ Tendons connect muscle to bone ◦ Detect muscle tension  Muscle spindles ◦ Embedded in muscle tissue ◦ Detect changes in muscle length Knee-jerk reflex    Stretch reflex – monosynaptic, serves to maintain limb stability Withdrawal reflex – multisynaptic Reciprocal innervation – antagonistic muscles interact so that movements are smooth – flexors are excited while extensors are inhibited, etc. Perhaps all but the highest levels of the sensorimotor system have patterns of activity programmed into them and complex movements are produced by activating these programs  Cerebellum and basal ganglia then serve to coordinate the various programs  A given movement can be accomplished various ways, using different muscles  Central sensorimotor programs must be stored at a level higher than the muscle (as different muscles can do the same task)  Sensorimotor programs may be stored in 2° motor cortex  Programs for many species-specific behaviors established without practice  Fentress (1973) – mice without forelimbs still make coordinated grooming motions  Practice can also generate and modify programs  ◦ Response chunking ◦ Shifting control to lower levels  Response chunking ◦ Practice combines the central programs controlling individual response  Shifting control to lower levels ◦ Frees up higher levels to do more complex tasks ◦ Permits greater speed
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            