Download chapter_1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Endocannabinoid system wikipedia , lookup

Neuroeconomics wikipedia , lookup

Feature detection (nervous system) wikipedia , lookup

Apical dendrite wikipedia , lookup

Neurocomputational speech processing wikipedia , lookup

Neuroethology wikipedia , lookup

State-dependent memory wikipedia , lookup

Neuroinformatics wikipedia , lookup

Neural oscillation wikipedia , lookup

Cognitive neuroscience wikipedia , lookup

Artificial intelligence wikipedia , lookup

Neuroanatomy wikipedia , lookup

Optogenetics wikipedia , lookup

End-plate potential wikipedia , lookup

Caridoid escape reaction wikipedia , lookup

Multielectrode array wikipedia , lookup

Donald O. Hebb wikipedia , lookup

Neuromuscular junction wikipedia , lookup

Mirror neuron wikipedia , lookup

Activity-dependent plasticity wikipedia , lookup

Central pattern generator wikipedia , lookup

Synaptogenesis wikipedia , lookup

Neural coding wikipedia , lookup

Axon wikipedia , lookup

Molecular neuroscience wikipedia , lookup

Catastrophic interference wikipedia , lookup

Holonomic brain theory wikipedia , lookup

Single-unit recording wikipedia , lookup

Metastability in the brain wikipedia , lookup

Neural engineering wikipedia , lookup

Neural modeling fields wikipedia , lookup

Neuropsychopharmacology wikipedia , lookup

Stimulus (physiology) wikipedia , lookup

Sparse distributed memory wikipedia , lookup

Artificial neural network wikipedia , lookup

Neurotransmitter wikipedia , lookup

Development of the nervous system wikipedia , lookup

Nonsynaptic plasticity wikipedia , lookup

Convolutional neural network wikipedia , lookup

Chemical synapse wikipedia , lookup

Biological neuron model wikipedia , lookup

Synaptic gating wikipedia , lookup

Recurrent neural network wikipedia , lookup

Types of artificial neural networks wikipedia , lookup

Nervous system network models wikipedia , lookup

Transcript
Chapter 1
Introduction to Neurocomputing
國立雲林科技大學 資訊工程研究所
張傳育(Chuan-Yu Chang ) 博士
Office: ES 709
TEL: 05-5342601 ext. 4337
E-mail: [email protected]
What is Neurocomputing?

Neurocomputing approach




Involves a learning process within an ANN
一旦類神經網路訓練完成,該類神經網路即可進行特定的工
作。例如pattern recognition
Associated (聯想)
Why can we (human) perform certain tasks much
better than a digital computer?

Our brain is organized


大腦神經(nerve)的傳導速度比電子的速度慢(106)倍,但腦神經
具有大量平行的計算能力。(約1011個neuron)
大腦是一個adaptive, nonlinear, parallel的計算機。
What is Neurocomputing? (cont.)

類神經網路的主要能力:


由範例學習(learn by example)
歸納(generalize)


The NN can classify input patterns to an acceptable
level of accuracy even if they were never used during
the training process.
大部分的類神經網路具有類似的特徵:



Parallel computational architecture
Highly interconnected
Nonlinearity output
What is Neurocomputing? (cont.)

Applications of neural networks:








Image processing
Prediction and forecasting
Associative memory
Clustering
Speech recognition
Combinatorial optimization
Feature extraction
…
What is Neurocomputing? (cont.)

使用neurocomputing解決特定問題的優點:



Fault tolerance
Nonlinear
Adaptive
Course Introduction

Text book


Fredric M. Ham, Principles of Neurocomputing for
Science & Engineering, McGRAW-HILL, 2001.
Simon Haykin, Neural Networks-A comprehensive
foundation, 2nd Edition. Prentice Hall, 1999
Contents


Introduction to Neurocomputing
Fundamental Neurocomputing Concepts






Activation Function
Adaline and Madaline
Perceptron
Multilayer perceptron
Leaning Rules
Mapping Networks




Associative memory
Backpropagation Learning Algorithm
Counterpropagation
Radial Basis Function Neural Networks
Contents (con’t)

Self-Organizing Networks




Kohonen Self-Organizing Map
Learning Vector Quantization
Adaptive Resonance Theory Neural network
Recurrent Networks and Temporal
feedforward Networks




Hopfield Associative Memory
Simulated Annealing
Boltzmann Machine
Time-Delay Neural Networks
Contents (con’t)

Statistical Methods Using Neural Networks


Principal Component Analysis
Independent Component Analysis
Course Requirements

Homeworks



Final Project



Supervised learning: Digits Recognition
Unsupervised learning: Traveling Salesperson
Problem (TSP)
Presentation
Implementation and Demonstration
Final Examination
請思考這門課對各位的研
究是否有幫助?
Does this course helpful to your
research?
Historical notes

McCulloch and Pitts (1943)



Hebb (1949)



No training to neurons.
Act as certain logic functions.
Based on a neurobiological viewpoint, describes a learning
process.
Hebb stated that information is stored in the connections of
neurons and postulated a learning strategy for adjustment
of the connection weight.
Rosenblatt (1958)

Proposed the concept of the perceptron
Historical notes (cont.)

Widrow and Hoff (1960)


Minsky and Papert (1969)



Slowed down neural network research in 1969.
Perceptrons have limited capabilities, the XOR problem.
Kohonen and Anderson (1972)


The Adaline (adaptive linear element) trained by the LMS
learning rule.
Content-addressable associative memories.
Werbos (1974)

The first description of the backpropagation algorithm for
training multilayer feed-forward perceptrons.
Historical notes (cont.)

Little and Shaw (1975)


Lee (1975)


Presented the fuzzy McCulloch-Pitts neuron mode.
Hopfield (1982)



Use a probabilistic model of a neuron instead of a
deterministic one.
Proposed a recurrent neural network
The network can store information in a dynamically stable
storage and retrieval.
Kohonen (1982)


Presented the self-organizating feature map.
It is an unsupervised, competitive learning, clustering
network in which only one neuron is “on” at a time.
Historical notes (cont.)




Oja (1982)
 Presented a single linear neuron trained by a normalized
Hebbian learning rule that acts as a principal-component analyzer.
 The neuron is capable of adaptive extracting the 1st principal
eignvector from the input data.
Carpenter and Grossberg (1987)
 Developed self-organizing neural networks based adaptive
resonance theory (ART)
Sivilotti, Mahowald, and Mead (1987)
 The first VLSI realization of neural networks.
Broomhead and Lowe (1988)
 First exploitation of radial basis function in designing neural
networks.
McCulloch-Pitts neuron





The McCulloch-Pitts neuron is a two-state device. (on/off, binary)
The output of a particular neuron cannot coalesce with output of
another neuron; it can branch to another neuron and terminate
as an input to that neuron.(個別神經元的輸出無法與其他神經元
的輸出合併,但可當成其他神經元的輸入。)
Two types of terminations
 Excitatory input
 Inhibitory input
There can be any number of inputs to a neuron. .(一個神經元可
有任意多個輸入)
Whether the neuron will be on (firing) or off depends on the
threshold of the neuron.(但其輸出是由threshold所決定。)
McCulloch-Pitts neuron

Physical assumptions:(基本假設)





The neuron activity is an all-or-nothing process, ie., the
activation of the neuron is binary.
A certain fixed number of synapses (>1) must be excited
within a period of latent addition for a neuron to be excited.
The only significant delay within the nervous system is
synaptic delay.
The activity of any nonzero inhibitory synapse absolutely
prevents excitation of the neuron at that time.
The structure of the network does not change with time.
McCulloch-Pitts neuron

Architecture of a McCulloch-Pitts neuron



N excitatory input
M inhibitory input
1個由threshold決定的輸出y。
1
y
0

for u  
for u  
為滿足前面的假設4,
nw  c  
u= S xi w
McCulloch-Pitts neuron

Example 1

The AND logic function can be realized using the
McCulloch-Pitts neuron having two synaptic connections
with equal weights of 1 and a threshold =2.
McCulloch-Pitts neuron

Example 2:

The OR logic function can be realized using the McCullochPitts neuron having two synaptic connections with equal
weights of 2 and a threshold =2.
McCulloch-Pitts neuron

Example 3:

The XOR logic function can be realized using three
McCulloch-Pitts neuron having two synaptic connections
with equal weights of 2 and a threshold =2.
Neurocomputing and Neuroscience

Biological neural networks



神經系統(nervous system)是一個巨大且複雜的神經網路
(neural network),大腦是神經系統的中樞,神經系統和各感
官器官相連結,傳遞感官訊息給大腦,並且傳送行為命令給
反應器官(effectors) 。
大腦是由大約1011個神經元所組成,而這些神經元相互連接
成子網路,組成所謂的細胞核(nuclei) ,細胞核是由一連串
的神經元所組成,具有特定的功能。
在大腦中的感官系統(sensory system)和它的子網路,擅於
將複雜的感官資訊分解(decompose)成知覺的基本特性。對
於不同的知覺會有不同的分解。
Neurocomputing and Neuroscience

Fausett 更有效的建構生物的(biological)神經元(neuron)成
類神經元(artificial neurons)。大腦和神經系統的其他部分是
由許多不同種類的神經元組成,有不同的電子特性、數量、
大小、及連接方式。
Small cell
樹狀突
軸突
Large cell
Neurocomputing and Neuroscience

一個生物神經元包含有三個
部分:



樹狀突(dendrites) :收取來
自其他神經元的訊號。
Cell body:用來彙總來自樹
狀突及其他神經鍵的訊號。
當收到的刺激大於threshold
時,神經元將產生一個電能
(potential) ,也就是fire,並
將此電能沿著axon傳給其他
神經元或是目的細胞,例如
肌肉。
軸突(axon) :藉由神經鍵
(synapses)和其他神經元的
軸突(axon)相連結。神經鍵
(synapses)的數目可能從數
百到上萬。
(體幹)
Neurocomputing and Neuroscience

A biological neuron consists
of three main components:



Dendrites :receive signals
from other neurons。
Cell body (soma):sums the
incoming signals from the
dendrites and sums the signals
from the numerous synapses on
its surface.
Axon :the axons of other
neurons connect to the dendrite
and cell body surfaces by
means of connectors called
synapses。The number of
synaptic connection from other
neurons may range from a few
hundred to 10,000.
(體幹)
Neurocomputing and Neuroscience
Simplified drawing of the synapses
Neurocomputing and Neuroscience

由於神經元的外表有神經薄膜,因此訊號到達樹狀突時會因
時間和距離而迅速衰減。而喪失刺激神經元的能力,除非它
們收到來自附近神經元的訊號強化了衰減的訊號。
Neurocomputing and Neuroscience


如果神經元的輸入無法達到threshold,則輸入訊號將快速衰
減,而且不會產生行動電能(potential)。因此,action
potential的產生原則是all-or-nothing。
輸入強度是表現在每秒產生的action potential數量,而不是
action potential的大小。較強的輸入信號會比較弱的輸入信
號產生較多的action potential。
Neurocomputing and Neuroscience


Synapses are the points of contact that connect the axon
terminals to their targets.
Synapse由下列所組成:



Nerve terminal
Synaptic cleft or gap
Postsynaptic membrane
Classification of neural networks

Supervised learning vs. unsupervised learning