* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Properties of reflex action
Environmental enrichment wikipedia , lookup
Mirror neuron wikipedia , lookup
Embodied language processing wikipedia , lookup
Long-term depression wikipedia , lookup
Neuroscience in space wikipedia , lookup
Perception of infrasound wikipedia , lookup
Endocannabinoid system wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
Molecular neuroscience wikipedia , lookup
Nonsynaptic plasticity wikipedia , lookup
Biological neuron model wikipedia , lookup
Activity-dependent plasticity wikipedia , lookup
Development of the nervous system wikipedia , lookup
Clinical neurochemistry wikipedia , lookup
Neurotransmitter wikipedia , lookup
Neuromuscular junction wikipedia , lookup
Optogenetics wikipedia , lookup
Response priming wikipedia , lookup
Neuroanatomy wikipedia , lookup
Circumventricular organs wikipedia , lookup
Channelrhodopsin wikipedia , lookup
Central pattern generator wikipedia , lookup
Neural coding wikipedia , lookup
Pre-Bötzinger complex wikipedia , lookup
Premovement neuronal activity wikipedia , lookup
Nervous system network models wikipedia , lookup
Evoked potential wikipedia , lookup
Psychophysics wikipedia , lookup
Microneurography wikipedia , lookup
Synaptogenesis wikipedia , lookup
Synaptic gating wikipedia , lookup
Caridoid escape reaction wikipedia , lookup
Feature detection (nervous system) wikipedia , lookup
بسم هللا الرحمن الرحيم ﴿و ما أوتيتم من العلم إال قليال﴾ صدق هللا العظيم االسراء اية 58 Polysynaptic Reflexes By Dr. Abdel Aziz M. Hussein Assist. Prof of Physiology • Synaptic transmission is inhibited by all the following, except :• • • • a- oxygen lack b- alkalosis c- acidosis d- prolonged activity of synapse • Post-tetanic Potentiation in synapses :• a- is due to increased Ca ++ concentration in postsynaptic neurons • b- is due to increased Ca ++ influx into presynaptic neurons • c- results from slow prolonged stimulation of synapse • d- causes fatigue of the synapse • Long-term potentiation of synaptic transmission :- • a- is involved in pain control system • b- is caused by increased Ca ++ concentration in presynaptic neurons • c- results from fast repetitive stimulation of synapse • d- is associated with decreased Ca ++ concentration in postsynaptic neurons • In spinal reflexes the efferent neurons are of 2 types; Autonomic M. Neurons Somatic M. Neurons From LHCs From AHCs Mediate somatic reflexes Mediate autonomic reflexes Alpha MNs Gamma MNs Spinal Efferent Neurons AHCs Skeletal Ms LHCs Smooth Ms Somatic Efferent Neurons Somatic Efferent Neurons Alpha motor neuron Gamma motor neuron Motor Unit Motor Unit and motor pool Def It is a polysynaptic reflex that moves the affected limb away from the painfull stimulus; Pathway 1. Stimulus → painful stimulus 2. Receptors → free nerve endings 3. Afferents→ A delta 4. Center → AHCs 5. Response Flexion of the stimulated limb Increased extension of the contralateral limb Significance 1) Withdrawal reflex: Is of survival or protective value →help to immediately remove the stimulated part of the body away from sources of painful stimuli. 2) Crossed extensor reflex: Is supportive reflex i.e. supports the body weight which is shifted to the opposite limb. • Properties of polysynaptic spinal reflexes are due to the presence of interneurons and synapses in the reflex arc. • They include; • The impulse is conducted from receptors to afferents to interneurons then to efferent i.e. one way direction • At synapse, conduction only in one direction from the presynaptic neuron to the post-synaptic neuron, because the transmitter releasing vesicles present only in the pre-synaptic membrane Total reflex time: Def., Is the period or time that passes between application of the stimulus and the onset of the reflex response. Causes: ? Central Delay : • It is the time needed for transmission of impulses through central synapses in the reflex pathway. • It depends mainly on the number of synapses in reflex pathway. • It is a gradual decline in the reflex response when its sensory nerve is stimulated for a relatively prolonged period. • It is due to fatigue of synapses in the reflex pathway . The site (locality) of the stimulus determines the nature of response e.g.: In withdrawal reflex, the pattern of flexion that occurs varies with the site of the stimulus. a) Stimulus at the lateral aspect of the thigh leads to adduction and medial rotation. b) Stimulus at medial aspect of the thigh leads to abduction and lateral rotation Mechanism: 1. Pain fibers from the lateral aspect of the thigh centrally connect with and excite the motor neuron pool of the flexors and adductors 2. Pain fibers from medial side are connected with flexors and abductors Def. The extent of the response is determined by the strength of stimulation, so; 1) Weak stimuli produce limited responses. 2) Stronger stimuli produce more widespread responses. Example When applying painfull stimulus to sole 1. Mild painful stimulus at the sole of the foot leads to dorsiflexion of the ankle only. 2. Moderate painful stimulus at the sole of the foot leads to dorsiflexion of the ankle and flexion of the knee. 3. Severe painful stimulus at the sole of the foot leads to dorsiflexion of the ankle and flexion of both knee and hip. Mechanism: 1) Strong stimuli cause stimulation of more receptors → activate more afferents whose central terminals diverge to activate many interneurons at various levels of CNS→ spreading of inputs in the CNS → excite greater numbers of efferents. 2) Divergence of central terminals of afferents and axons of interneurons Def., • Reflex contraction of a group of ms is usually associated with inhibition of the antagonistic ms. Mechanism: Afferents give excitatory inputs to the MNs of a ms, activate at the same time inhibitory interneurons ,which inhibit the MNs of antagonistic ms. Significance: It provides a coordinated ms contraction around the joints and reduces the resistance to movements. Flexion withdrawal crossed extensor reflex • It is also found in other areas of the nervous system other than spinal cord e.g. A) In Medulla Oblongata: pressor area and depressor area and inspiratory area and expiratory area B) In the Hypothalamus: heat gain center and heat loss center and feeding center and satiety center Exception: +ve supporting reaction in which all groups of ms of lower limbs are contracted at the same time. Deep pressure applied to the sole of foot by the body weight during standing results in reflex contraction of both flexors and extensors of the lower limb to support the body against gravity • 2 phenomena which are studied by comparing motor and reflex tetanus Tetanus Contraction Start Relaxation End Tetanus Contraction Start Relaxation End Contraction Relaxation Latent Period Recruitment Def., It is a gradual ↑ in the magnitude of the reflex response at the onset of afferent stimulation until the response reaches its full magnitude. Cause: • Motor neurons are said to be gradually recruited (activated), one after the other i.e. not excited at the same time. Due to; A. Different velocities of nerve impulses due to different thickness of afferent neurons. B. Presence of interneurons. After-discharge Def., It is the persistence of the reflex response for a period of time after stoppage of sensory stimulation. Cause: • is explained by the repetitive discharge interneuron circuits Test yourself A flexor withdrawal reflex shows all the following properties, except :a- recruitment b- prepotent c- non-fatigable d- irradiation Test yourself After-discharge of reflex responses :a- increase the magnitude of the reflex responses b- delays the onset of fatigue of reflex responses c- involves interneuron circuits d- depends upon spatial summation THANKS