Download BOX 30.8 THE ROLE OF THE SUBTHALAMIC NUCLEUS IN

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Nervous system network models wikipedia , lookup

Time perception wikipedia , lookup

Caridoid escape reaction wikipedia , lookup

Neurocomputational speech processing wikipedia , lookup

Human brain wikipedia , lookup

Neurophilosophy wikipedia , lookup

Cognitive neuroscience wikipedia , lookup

Clinical neurochemistry wikipedia , lookup

Development of the nervous system wikipedia , lookup

Emotional lateralization wikipedia , lookup

Central pattern generator wikipedia , lookup

Cortical cooling wikipedia , lookup

Biology of depression wikipedia , lookup

Neuroesthetics wikipedia , lookup

Neuroplasticity wikipedia , lookup

Limbic system wikipedia , lookup

Environmental enrichment wikipedia , lookup

Optogenetics wikipedia , lookup

Rheobase wikipedia , lookup

Executive functions wikipedia , lookup

Feature detection (nervous system) wikipedia , lookup

Affective neuroscience wikipedia , lookup

Muscle memory wikipedia , lookup

Anatomy of the cerebellum wikipedia , lookup

Neuropsychopharmacology wikipedia , lookup

Aging brain wikipedia , lookup

Neural correlates of consciousness wikipedia , lookup

Neuroanatomy of memory wikipedia , lookup

Hypothalamus wikipedia , lookup

Orbitofrontal cortex wikipedia , lookup

Cognitive neuroscience of music wikipedia , lookup

Neuroeconomics wikipedia , lookup

Eyeblink conditioning wikipedia , lookup

Premovement neuronal activity wikipedia , lookup

Prefrontal cortex wikipedia , lookup

Embodied language processing wikipedia , lookup

Cerebral cortex wikipedia , lookup

Synaptic gating wikipedia , lookup

Motor cortex wikipedia , lookup

Basal ganglia wikipedia , lookup

Transcript
BOX 30.8
THE ROLE OF THE SUBTHALAMIC NUCLEUS IN STOPPING
You are sitting astride your bicycle at an intersection and just about to press down on the
pedal when all of a sudden a motorist runs the light. This requires the rapid cancellation of an
initiated action. Recent studies suggest that rapid stopping of this kind is implemented by a
“hyperdirect” pathway between the frontal cortex and the subthalamic nucleus.
The broader sequence of events that engages this pathway is as follows. Sensory information
about the stop signal (in this case, the car) is quickly relayed to the prefrontal cortex, where the
stopping command must be generated. Two broad regions of the prefrontal cortex are apparently
critical for stopping behavior: the right inferior frontal cortex and the dorsomedial frontal cortex
(especially the presupplementary motor area). These two regions appear to work together to send a
stop command to intercept the Go process, via the subthalamic nucleus. To appreciate how, first
consider the Go process (the initiated pedal press). This is likely generated by premotor areas that
project via the direct pathway of the basal ganglia (through striatum, pallidum, and thalamus),
eventually exciting primary motor cortex and generating corticospinal volleys to the foot. An
important point of interaction for Stop and Go processes could be the globus pallidus. Whereas the
Go process activates the striatum and inhibits part of the globus pallidus pars interna, the Stop
process activates the subthalamic nucleus which then excites the globus pallidus pars interna, which
reduces thalamocortical excitability, leading to increased GABAergic inhibition in primary motor
cortex. The consequence is a cessation of the corticospinal volleys for the Go process.
Interestingly, recent studies show that rapidly stopping the hand leads to suppression of foot
motor representations and rapidly stopping the voice leads to suppression of hand motor
representations. This shows that stopping has very broad effects on the motor system (a “global
stop command”). While not proven, this could relate to the fact that the subthalamic nucleus
appears to have a very broad effect on multiple neurons in the globus pallidus pars interna (Fig.
30.8).
Although rapid stopping has only so far been explored in the action domain, note that the
subthalamic nucleus has different territories, including sensorimotor, associative and limbic, which
connect to motor/premotor cortical, lateral prefrontal and cingulate/orbital frontal regions,
respectively. It is an open question whether the kind of stopping discussed here could extend, for
example, to the limbic domain of the subthalamic nucleus to enable emotional and motivational
control. Notably, the limbic domain of the subthalamic nucleus is now a target for deep brain
stimulation in obsessive compulsive disorder, and some studies have reported that inadvertent
stimulation of this area in Parkinson’s patients induces hypomania.
Other research points to the importance of neural oscillations in the beta frequency band for
the stopping system. Successfully stopping action is associated with increased beta power in the
subthalamic nucleus, as well as the presupplementary motor area and the right inferior frontal
cortex. It is possible that stopping is implemented via longdistance synchronization in the beta band
in the overall cortico-basal ganglia network.
Adam R. Aron
Suggested Readings
Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007).
Converging evidence for a fronto-basalganglia network for inhibitory control of action and
cognition. Journal of Neuroscience, 27, 11860–11864.
Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response
inhibition from cognitive and clinical neuroscience. Neuroscience and Biobehavioral Reviews, 33, 631–646.
Ray, N., Brittain, J., Holland, P., Joundi, R., & Stein, J. (2012, March). The role of the subthalamic
nucleus in response inhibition: Evidence from local field potential recordings in the human
subthalamic nucleus. Neuroimage, 60(1), 271–278.