* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ch 10 Brain Damage & Neuroplasticity (pt2)
Synaptogenesis wikipedia , lookup
Neuroesthetics wikipedia , lookup
Neuroregeneration wikipedia , lookup
Lateralization of brain function wikipedia , lookup
Synaptic gating wikipedia , lookup
Donald O. Hebb wikipedia , lookup
Artificial general intelligence wikipedia , lookup
Single-unit recording wikipedia , lookup
Feature detection (nervous system) wikipedia , lookup
Neuroeconomics wikipedia , lookup
Blood–brain barrier wikipedia , lookup
Neuroinformatics wikipedia , lookup
Neural engineering wikipedia , lookup
Activity-dependent plasticity wikipedia , lookup
Neurolinguistics wikipedia , lookup
Selfish brain theory wikipedia , lookup
Human brain wikipedia , lookup
Optogenetics wikipedia , lookup
Brain morphometry wikipedia , lookup
Neurophilosophy wikipedia , lookup
Neurogenomics wikipedia , lookup
Development of the nervous system wikipedia , lookup
Molecular neuroscience wikipedia , lookup
Brain Rules wikipedia , lookup
Neurotechnology wikipedia , lookup
Cognitive neuroscience wikipedia , lookup
Haemodynamic response wikipedia , lookup
Spike-and-wave wikipedia , lookup
Neuroplasticity wikipedia , lookup
History of neuroimaging wikipedia , lookup
Channelrhodopsin wikipedia , lookup
Biochemistry of Alzheimer's disease wikipedia , lookup
Nervous system network models wikipedia , lookup
Holonomic brain theory wikipedia , lookup
Neuropsychology wikipedia , lookup
Aging brain wikipedia , lookup
Sports-related traumatic brain injury wikipedia , lookup
Neuroprosthetics wikipedia , lookup
Metastability in the brain wikipedia , lookup
Clinical neurochemistry wikipedia , lookup
March 20, 2013 Brain Tumors Cerebrovascular Disorders (Strokes) Cerebral Hemorrhage & Ischemia Closed-Head Injuries Infections Bacterial & Viral Neurotoxins Genetic Factors Programmed Cell Death Normal human cells have 23 pairs of chromosomes An extra chromosome 21 results in Down syndrome Occurs in 0.15% of births ▪ Likelihood increases with maternal age Flattened skull & nose, inner eye folds of skin, short fingers, intellectual impairment & medical complications Apoptosis: genetic self-destruct program for neurons (cell suicide) Functions in early development by eliminating extra, unnecessary neurons Also involved in brain damage Passive cell death (necrosis) occurs only when neurons are damaged severely The majority is due to apoptosis Neurons slowly shrivel, die & break down without inflammation or causing damage to nearby cells Epilepsy Parkinson’s Disease Huntington’s Disease Multiple Sclerosis Alzheimer’s Disease Main symptom is repeated seizures, caused by chronic brain dysfunction Different types of seizures Convulsions ▪ Motor seizures; involve tremors (clonus), rigidity (tonus) & loss of balance and consciousness Others happen with seemingly no change in behavior All of the previously discussed causes of brain damage can cause epilepsy Often associated with problems at inhibitory synapses Diagnosed with scalp electroencephalography (EEG) People often experience a weird psychological change before a convulsion (epileptic aura) Ex: bad smell, déjà vu, hallucination Can give a hint of brain area causing seizures 2 types 1. Partial Partial seizure does not involve the whole brain Caused by synchronous burst of neuron firing Generalized 2. Entire brain is involved Grand mal (“classic” seizure) Petit mal (no convulsions) Symptoms of a resting tremor, muscular rigidity, difficulty initiating movement, slow movement, masklike face Associated with degeneration of the substantia nigra in the midbrain Primarily of dopaminergic neurons So symptoms can be alleviated by L-Dopa injections (but not permanently) Other treatments include dopamine agonists Another progressive motor disorder Late stages involve severe cognitive decline Onset around age 40 No cure & usually death within 15 years Rare Has a strong genetic basis If a parent has it, 50/50 chance child will have it MS is a progressive disease that attacks the myelin of axons in the CNS Eventually causes dysfunction in the axons & scar tissue develops (sclerosis) An autoimmune disorder Symptoms include visual disturbances, muscular weakness, numbness, tremor & ataxia (loss of motor coordination) Genetic & environmental influences The most common cause of dementia Likelihood of having it increases with age 10% of age 65+; 35% of age 85+ Progressive disease Early stage: memory decline, attention problems & personality changes Mid stage: confusion, irritability, anxiety, problems with speech, swallowing & bladder control Ultimately terminal Can only be certain of diagnosis during autopsy Presence of neurofibrillary tangles & amyloid plaques Neuroplastic responses to brain damage 1. Degeneration 2. Regeneration 3. Reorganization 4. Recovery of function aka neural deterioration 2 types 1. Anterograde degeneration Degeneration of distal segment ▪ ▪ (Section of axon between the cut & the synaptic terminal) Segment no longer gets energy from the cell body Retrograde degeneration 2. Degeneration of proximal segment ▪ ▪ (Section of axon between the cut & the soma) If the axon cannot reestablish contact with a target, the neuron eventually dies Regrowth of damaged neurons Not as successful in mammals as in lower vertebrates & inverts Almost nonexistant in CNS of adult mammals Regrowth from proximal stump 2-3 days after axonal damage Does not necessarily mean that function will be returned The brain can effectively reorganize itself in response to damage Other areas can compensate for the damaged area’s function Ex: blind individuals have little use for visual cotex, so the auditory & somatosensory cortex expands into this region, giving them heightened sensitivity to hearing & touch Works by strengthening existing connections & making new ones May be possible to reduce brain damage by blocking neural degeneration Apoptosis inhibitor proteins Nerve growth factor Estrogren ▪ Potentially explains why several brain disorders are less common in women Molecules that limit degeneration also promote regeneration Regeneration in mammalian CNS doesn’t normally happen, but in the lab it can be induced Potential treatment with transplantation of fetal tissue into the brain or injection of embryonic stem cells Rehabilitation training can help by encouraging brain reorganization Ex: treadmill for spinal cord injuries Physically & mentally active individuals are less likely to contract neurological disorders & if they do, their symptoms are more mild & they have fuller recovery