* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Systematic Implications of DNA variation in subfamily
Gel electrophoresis of nucleic acids wikipedia , lookup
Gene expression profiling wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Transposable element wikipedia , lookup
DNA damage theory of aging wikipedia , lookup
SNP genotyping wikipedia , lookup
DNA sequencing wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Oncogenomics wikipedia , lookup
DNA barcoding wikipedia , lookup
Cancer epigenetics wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Primary transcript wikipedia , lookup
Genome (book) wikipedia , lookup
DNA vaccination wikipedia , lookup
Genealogical DNA test wikipedia , lookup
Genetic engineering wikipedia , lookup
Nucleic acid double helix wikipedia , lookup
DNA supercoil wikipedia , lookup
Mitochondrial DNA wikipedia , lookup
No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup
Pathogenomics wikipedia , lookup
Whole genome sequencing wikipedia , lookup
United Kingdom National DNA Database wikipedia , lookup
Epigenomics wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Minimal genome wikipedia , lookup
Cell-free fetal DNA wikipedia , lookup
Designer baby wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Bisulfite sequencing wikipedia , lookup
Molecular cloning wikipedia , lookup
Point mutation wikipedia , lookup
Cre-Lox recombination wikipedia , lookup
Human genome wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Extrachromosomal DNA wikipedia , lookup
Microsatellite wikipedia , lookup
Genomic library wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Microevolution wikipedia , lookup
Genome evolution wikipedia , lookup
Non-coding DNA wikipedia , lookup
Genome editing wikipedia , lookup
Metagenomics wikipedia , lookup
History of genetic engineering wikipedia , lookup
Helitron (biology) wikipedia , lookup
Plant Molecular Systematics Spring 2014 “Problems” with morphological data… • Convergence and parallelisms • Reduction and character loss • Phenotypic vs. genotypic differences • Evaluation of homology • Misinterpretation of change or polarity • Limitation on number of characters • Phenotypic plasticity Always searching for new types of characters… Is molecular data intrinsically better than morphological data? Central Dogma Central Dogma Lipid pigments: chlorophyll lycopenes xanthophylls carotene Phenolics: Iridoid flavonols compounds flavones tannins anthocyanins Terpenes Secondary Metabolites Alkaloids (N-containing) e.g. nicotine caffeine morphine betalains Development of Molecular (Chemical) Systematic Methods “Chemosystematics” • • • • • • • Early methods relied on chromatography to separate complex mixtures of secondary metabolites, detect them, and then compare between taxa “spot botanists” – very phenetic Better separation and identification methods developed – used pathway stages as cladistic characters - phytochemistry Move away from secondary metabolites to proteins Early protein studies used immunological reactions Development of improved electrophoretic methods – permitted direct protein comparisons between taxa Comparison of seed storage proteins Development of direct estimates of genetic relationships based on allele frequency of enzyme variants Molecular (DNA) Systematics • Next step was to examine DNA directly through examination and comparison of restriction fragments (RFLP bands) • Technology evolved to make it feasible to sequence DNA directly • Initially limited to single genes or noncoding regions • Now feasible to sequence large numbers of genes or regions or increasingly even whole genomes relatively quickly Molecular Systematics - Can obtain phylogenetically informative characters from any genome of the organism - Assumes that genomes accumulate molecular changes by lineage, as morphological characters do - Possibly greater assurance of homology with molecular data (less likely to misinterpret characters) but homoplasy happens! - Principal advantages are the much greater number of molecular characters available & greater comparability across lineages How big are genomes of organisms? Genomes of the Plant Cell Plastid Nuclear Mitochondrial Three genomes in plant cells Chloroplast Mitochondrion Nucleus 135,000160,000 bp 200,0002,500,000 bp 1.1 x 106 to 1.1 x 1011 kilobase pairs Generally maternally inherited (seed parent) Generally maternally inherited (seed parent) Biparentally inherited Selection of DNA region to compare: • • • • • Should be present in all taxa to be compared Must have some knowledge of the gene or other genomic region to develop primers, etc. Evolutionary rate of sequence changes must be appropriate to the taxonomic level(s) being investigated; “slow” genes versus “fast” genes Sequences should be readily alignable The biology of the gene (or other DNA sequence) must be understood to assure homology Genes frequently used for phylogenetic studies of plants: • • • Mitochondrial genome – uniparentally (maternally) inherited, but genes evolve very slowly and structural rearrangements happen very frequently, so generally not useful in studying relationships, but there are some exceptions Plastid genome – uniparentally (maternally) inherited - rbcL – ribulose-bisphosphate carboxylase large subunit - ndhF – NADH dehydrogenase subunit F - atpB – ATP synthetase subunit B - matK – maturase subunit K - rpl16 intron – ribosomal protein L16 intron Nuclear genome – biparentally inherited - ITS region – internal transcribed spacers ITS1 and ITS2 - 18S, 26S ribosomal nuclear DNA repeat - adh – alcohol dehydrogenase - many other genes now with next generation sequencing Plastid Genome -Circular, derived from endosymbiosis of cyanobacteria -Three zones: LSC (large single copy region) SSC (small single copy region) IR (inverted repeats) - Genes related to photosynthesis and protein synthesis Fig. 14.4 The Polymerase Chain Reaction (PCR) (Fig. 14.2) Automated Sequencing Scanning of gel to detect fluorescently-labeled DNAs; data fed directly to computer. Fig. 14.3 How do we analyze molecular variation? - DNA nucleotide sequences (point mutations) - Structural rearrangements -insertions and deletions (indels) -inversions Aligned DNA sequences showing substitutions Insertion-Deletion Events - Can occur as single nucleotide gains or losses or as lengths of 2-many base pairs - Can also be “chunks” of DNA (i.e., losses of introns) A molecular synapomorphy for Subfamily Cactoideae (Cactaceae) – deletion of the plastid rpoC1 intron… ancestral derived (Wallace & Cota, Current Genetics, 1995) Cactaceae: trnL Intron Deletions trnL intron deletions – Columnar Cacti North American Clades Pachycereeae Leptocereeae Hylocereeae Corryocactus “Browningieae I”* - 268 bp Shared Deletion 2 “Browningieae II”* Cereeae Trichocereeae South American Clades (*Tribe Browningieae polyphyletic) Chloroplast DNA Inversion 23 kb inversion in all Asteraceae except for members of Tribe Barnadesieae (now Subfamily Barnadesioideae) Fig. 14.6 Comparative DNA Sequencing • • • • • • • • Obtain DNA samples from representative organisms (try to represent morphological diversity) and outgroups Identify DNA region(s) for comparison Extract DNA and use PCR to amplify targeted region Carry out sequencing reactions Run sequencing procedures (automated) Align sequences Use aligned sequences for phylogenetic analysis (various programs using various algorithms) Evaluate data in context of taxonomy and morphology Partial sequence of rbcL (plastid gene coding for Rubisco) in Poaceae Anomochlooideae Pharoideae Puelioideae BEP Clade Bambusoideae (bamboos) Pooideae (bluegrasses, wheat) Ehrhartoideae (rices and allies) Aristidoideae Stamens reduced to 3; + 55 mya (wiregrasses) Panicoideae (maize, panicgrasses) Chloridoideae (love grasses) PACMAD Clade Danthonioideae (pampas grasses) Micrairoideae Crepet & Feldman 1991 Arundinoideae (reeds) Genetic Databases International Nucleotide Sequence Database Collaboration GenBank: National Institutes of Health (NIH) Genetic Sequence Database http://www.ncbi.nlm.nih.gov/genbank/ EMBL: European Bioinformatics Institute Nucleotide Sequence Database DDBJ: DNA Databank of Japan Data mining Climatic Data -Global Biodiversity Information Facility (GBIF) -1,584,351 independent collection sites -10,469 taxa Edwards et al., Science 2010, Fig. 4 Genetic Data -2,684 taxa -8 regions (plastid and nuclear) -phylogenetic analysis Edwards & Smith, PNAS 2010, Fig. 1