Download senior biology - School of Medical Sciences

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Epigenetics of neurodegenerative diseases wikipedia , lookup

Protein moonlighting wikipedia , lookup

Genetic engineering wikipedia , lookup

Oncogenomics wikipedia , lookup

Deoxyribozyme wikipedia , lookup

Zinc finger nuclease wikipedia , lookup

Epigenetics of human development wikipedia , lookup

Copy-number variation wikipedia , lookup

Polycomb Group Proteins and Cancer wikipedia , lookup

Gene therapy of the human retina wikipedia , lookup

Gene therapy wikipedia , lookup

Gene desert wikipedia , lookup

Cell-free fetal DNA wikipedia , lookup

Neuronal ceroid lipofuscinosis wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Non-coding DNA wikipedia , lookup

Metagenomics wikipedia , lookup

Saethre–Chotzen syndrome wikipedia , lookup

Gene expression profiling wikipedia , lookup

Epistasis wikipedia , lookup

Neocentromere wikipedia , lookup

Human genome wikipedia , lookup

Genome evolution wikipedia , lookup

Gene nomenclature wikipedia , lookup

History of genetic engineering wikipedia , lookup

Gene expression programming wikipedia , lookup

No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup

X-inactivation wikipedia , lookup

RNA-Seq wikipedia , lookup

NEDD9 wikipedia , lookup

Microsatellite wikipedia , lookup

Genome (book) wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Mutation wikipedia , lookup

Genomics wikipedia , lookup

Gene wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Frameshift mutation wikipedia , lookup

Designer baby wikipedia , lookup

Genome editing wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

Microevolution wikipedia , lookup

Helitron (biology) wikipedia , lookup

Point mutation wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Transcript
SENIOR BIOLOGY
Blueprint of life and Genetics: the Code Broken?
NAME
SCHOOL / ORGANISATION
DATE
Bay 12, 1417
Bay number
Specimen number
INTRODUCTORY NOTES
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
Blueprint of Life
In this part of the workshop you will address the following syllabus points;
Activity: Comparative anatomy – Museum specimens
 perform a first- hand investigation or gather information from secondary sources (including
photographs/ forms diagrams/models) to observe, analyse and compare the structure of a
range of vertebrate forelimbs
Activity: Punnett Square – Online Punnett square tutorial
 distinguish between homozygous and heterozygous genotypes in monohybrid crosses
 perform an investigation to construct pedigrees or family trees, trace the inheritance of
selected characteristics and discuss their current use
 distinguish between the terms allele and gene, using examples
 explain the relationship between dominant and recessive alleles and phenotype using
examples
 solve problems involving monohybrid crosses using Punnett squares
Activity: STAR ORF Effect of Mutation on Phenotype (gene expression)
 describe the process of DNA replication and explain its significance
 outline, using a simple model, the process by which DNA controls the production of
polypeptides
 explain the relationship between proteins and polypeptides
 explain how mutations in DNA may lead to the generation of new alleles
 discuss evidence for the mutagenic nature of radiation
Page 2
Activity: Comparative anatomy – Museum specimens (Adjacent to Bay 2)
By observing the arm of our human skeleton, and the forelimb of the lizard and frog specimen,
determine the comparative placement of the various bones. Diagram your observations in the
space below, consider labelling and evolutionary progression. (You could also observe other
skeletal components.);
Page 3
Activity: Punnett Square – Online Punnett square tutorial – iPad task
Punnett squares: http://bit.ly/mohdpunnetttute
On the iPad navigate to the Punnett square tutorial – found on the home screen as an icon.
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
Page 4
Activity: STAR ORF Effect of Mutation on Phenotype (gene expression) – Computer Lab
The following can be found in the “Genetics Lab Final Set” folder
Open the STAR link
Copy and paste the Gene sequence into the STAR program
1. Why are there six frames of translation?
In the first frame select a green area and look at the Putative ORF Protein sequence. Choose other
green areas.
Choose one protein sequence Copy this and paste into a word file. Save the document as a text only file
to the genetics workshop folder with your initials and the date.
Open an excel document and import the word file as space delimited values.
You can now view the Amino Acid sequence of this protein. We will send this folder to your teachers. At
school you can compare your sequence to others, and try and find the DNA sequence it arose from.
Now repeat for the mystery sequences from the BLAST activity but copy the Amino Acid sequences
below try and align them 1 above the other to make any differences more obvious.
S1
S2
S3
S4
Highlight the amino acid differences above.
Page 5
Activity: Effect of Environment on cell Genotype – Skin Bay Specimens (Bay 12)
Compare specimens 903 and 2995, and the details about them in the catalogues.
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
Page 6
Genetics: The Code Broken?
In this part of the workshop you will address the following syllabus points;
Activity: Blood type – online module
 compare the inheritance of the ABO and Rhesus blood groups
 solve problems to predict the inheritance patterns of ABO blood groups
Activity: BLAST
 distinguish between mutations of chromosomes, including;
o rearrangements
o changes in chromosome number, including trisomy, and polyploidy
 and mutations of genes, including;
o base substitution
o frameshift
Activity: BLAST
 process and analyse information from secondary sources to describe the effect of one
named and described genetic mutation on human health
 process information from secondary data to outline the current understanding of gene
expression
Activity: Genetics Bay – Museum Specimens
 process and analyse information from secondary sources to identify a current use of gene
therapy to manage a genetic disease, a named form of cancer or AIDS
Page 7
Activity: Blood type – online module – iPad task
 compare the inheritance of the ABO and Rhesus blood groups
 solve problems to predict the inheritance patterns of ABO blood groups
Genetics tutorial: http://bit.ly/mohdbiogentute
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
Page 8
Activity: BLAST 1 – Computer Lab
Introduction
Today you are a medical research scientist in a pathology lab who has sequenced part of a patient’s DNA.
You are not sure what the DNA codes for, but you have 100 nucleotide base pairs of the DNA sequence in a
NotePad file on your desktop.
To find out what gene your nucleotide sequence codes for, you will be running an internet-based BLAST
search. BLAST, or the Basic Local Alignment Search Tool, compares your sequence with a very large database
of known DNA sequences that scientists around the world have compiled.
Find out what your mystery sequence encodes using a BLAST search:
1. Go to the BLAST website: http://blast.ncbi.nlm.nih.gov/Blast.cgi
2. Under “BLAST Assembled RefSeq Genomes”, select the “Human” genome to search
3. Copy and paste the whole of one of the CFTR mystery sequences below into the “Enter accession
number” box at the top of the page.
>Mystery sequence 1 (in-frame del)
GAATTTCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCGGTGTTTCCTATGATGAAT
ATAGATACAGAAGCGTCA
>Mystery sequence 2 (frameshift del)
TGGACCAGACCAATTTTGAGGAAAGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTGATTC
TGCTGACAATCTATCTGAA
>Mystery sequence 3 (frameshift substitution)
TGTGTCTGTAAACTGATGGCTAACAAAACTAGGATTTTGGTCACTTCTAAAATGGGACATTTAAAGAAAGCTGACAAAA
TATTAATTTTGCATGAAGGTAGC
>Mystery sequence 4 (synonymous mutation)
GACTTCATCCAGTTGTTATTAATTGTGATTGGGGCTATAGCAGTTGTCGCAGTTTTACAACCCTACATCTTTGTTGCAACA
GTGCCAGTGATAGTGGCTTTT
4. Under “Choose Search Set”, change the “Database” drop down menu to “RefSeq RNA”
5. Hit the “BLAST” button at the bottom of the page. Because this sequence database is very large and is
used by many scientists at once, this search may take a few seconds.
6. Once your BLAST report comes up on the screen, scroll down to the “Descriptions” heading. There will be
a table listing the matching sequences that the search found on the database.
7. In the top sequence identify the difference and highlight it in the sequence above.
8. Repeat for the other sequences
Page 9
9. Write down the name of the gene your sequence matches. You’ll find the name of the gene in the
“description” column of the table.
__________________________________________________________________________________
10. On the right hand side of the BLAST page click the “gene” link.
As a pathologist, you need to understand what this gene does in the body.
a) On what chromosome is this gene found?
b) What is the function of the protein coded by this gene?
__________________________________________________________________________________
__________________________________________________________________________________
c) What disorders are associated with defective versions of this protein?
__________________________________________________________________________________
d) How many nucleotide base pairs are in the coding sequence of the mRNA?
e) Does your sequence exactly match the normal CFTR gene? If not, how does it differ?
__________________________________________________________________________________
The CFTR gene is just one of many on human chromosome 7. Use the chromosome viewer in the banner in
the top right hand of the screen to look at how many disorders are caused by genes on chromosome 7.
http://web.ornl.gov/sci/techresources/Human_Genome/posters/chromosome/index.shtml
Use this information to answer the following questions:
11. Write down the following information about the gene:
g) How many base pairs make up this chromosome? Compare the number of base pairs on chromosomes 1,
7 and 21.
_______________________________________________________________________
h) Browse through the various disorders associated with genes on this chromosome. Name five different
parts of the body that could be affected by mutations on this chromosome?
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
Page 10
Scientists have found more than 1000 different mutations of the CFTR gene; Some have little or no effect on
CTFR function, while others cause cystic fibrosis on a spectrum that varies from mild to severe. Click on this
link to view a database of all known mutations in the CFTR gene.
http://www.genet.sickkids.on.ca/cftr/Home.html
The mutation present in your mystery sequence is by far the most common mutation observed in cystic
fibrosis patients. The deletion of three base pairs in the CFTR gene causes the loss of an amino acid called
phenylalanine at position 508 and the protein does not fold correctly.
Normal CFTR proteins, once translated and synthesised, are transported to the endoplasmic reticulum (ER)
and golgi apparatus before they are integrated into the cell membrane. Incorrectly folded CFTR proteins are
recognised by the ER and are destroyed before they reach the cell membrane.
Diagram of how the CFTR protein forms a channel for chloride ions through the membrane of a cell. Image credit:
http://massgenomics.org/2011/02/a-promising-new-drug-for-cystic-fibrosis.html
Page 11
CF SLICE – annotated – Microscope room
Label significant areas on this slide
Now zoom in an draw and annotate relevant areas of this slide.
Page 12
Page 13
Polycystic Kidney – 10 minutes – Adjacent to Bay 9
Draw this specimen.
Read the details of this specimen in the catalogue and using the Interactive images of disease on the ipad
describe the genetics of this condition; what does this tell us of the Pathology, draw a sketch of the
specimen and highlight the relevant areas with descriptions of what you saw and what was happening
________________________________________________________________________
__
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
Page 14
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
Chromosomes:
h) What is the difference between the above two images of chromosomes? Why are these two images
different?
__________________________________________________________________________________
i) When might each of these images have been collected?
__________________________________________________________________________________
Page 15
MUSEUM MAP
Page 16