* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture#31 – Evolution and cis
Quantitative trait locus wikipedia , lookup
Gene therapy wikipedia , lookup
Neuronal ceroid lipofuscinosis wikipedia , lookup
Long non-coding RNA wikipedia , lookup
No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup
Adaptive evolution in the human genome wikipedia , lookup
Saethre–Chotzen syndrome wikipedia , lookup
Transposable element wikipedia , lookup
Epigenetics of neurodegenerative diseases wikipedia , lookup
Epigenetics of diabetes Type 2 wikipedia , lookup
Genetic engineering wikipedia , lookup
Gene nomenclature wikipedia , lookup
Human genome wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Oncogenomics wikipedia , lookup
Koinophilia wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Non-coding DNA wikipedia , lookup
Frameshift mutation wikipedia , lookup
Gene desert wikipedia , lookup
Genome (book) wikipedia , lookup
Population genetics wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Genome editing wikipedia , lookup
History of genetic engineering wikipedia , lookup
Gene expression profiling wikipedia , lookup
Genome evolution wikipedia , lookup
Gene expression programming wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Helitron (biology) wikipedia , lookup
Designer baby wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
6/28/17 BIOLOGY 207 - Dr.Locke Lecture#31 – Evolution and cis-regulatory sequences Required readings and problems: Reading: Open Genetics, Chapter 12.4 Problems: Chapter 12.8 Optional Griffiths (2008) 9th Ed. Readings: pp 679-714 especially 693-699 Campbell (2008) 8th Ed. Readings: Concept 25.5: pp. 527-528 Assigned Problems: None Additional READING: Carroll et al. Regulating Evolution. Sci.Am. May, 2008. pp. 60-67. Concepts: How can gene regulation evolve? 1. DNA mutations in intergenic, coding sequences, and regulatory regions have different consequences for evolution 2. Mutations in regulatory sequences can cause loss or gain of enhancers 3. Mutations changing regulatory sequences circumvent the problem of pleiotropic effects of mutations altering coding sequences. Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 1 6/28/17 Genetic Variation (random mutation to DNA sequences) Variation + Selection -> Evolution ! Mutation in: 1) Intergenic regions a. no affect on gene expression/phenotype -> no selection for/against b. random drift causes fixation of DNA sequence c. useful for markers in genetic mapping /DNA finger printing Result: Evolution occurs via random mutation and fixation by random drift – no selection 2) Gene’s coding sequences a. changes gene product (RNA or protein) - > alters function-> affects phenotype b. doesn’t change gene’s transcription c. natural selection for/against function of product Result: Evolution occurs via random mutation and selection for/against the function of the gene’s product 3) Gene’s regulatory region/sequences a. same product from the gene, just its pattern of transcription changed. b. altered time, tissue, level of expression. c. can affect many traits/characteristics at once -> pleiotropic. d. can create new/novel patterns of expression; gain in function – neomorph. Result: Evolution occurs via random mutation and selection for/against the novel expression pattern Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 2 6/28/17 Examples of evolution of gene regulation. Changes DNA sequence -> changes in physical traits Research has focused on genes for last ~40 years –> amino acid coding sequences Human – Drosophila comparison Drosophila ~14K genes -> human ~35K genes ~2x change in total number, but humans are much more complex Human – Chimp comparison -> 99% same genes. -> 29% of the proteins are exactly the same. Mouse - Whale comparison They use essential the same set of proteins to build a body –> just instructions are different (Hox genes - page 421-426 in text) Vertebrate on average ~20K genes The same set of genes has been relatively stable for ~100M years The real change is in the regulation of those genes -> altered expression Analogy: same bricks and cement to build a doghouse and a cathedral It’s the instructions that make the difference – this is what is evolving. Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 3 6/28/17 Regulatory sequences are a key to understanding evolution Regulatory sequences - need to be identified experimentally - act combinatorial – multiple independent sites -> full extent of each genes expression. Example yellow gene in Drosophila Loss of tissue specific enhancer - selective – tissue specific – retain function in other tissues Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 4 6/28/17 Gain of enhancer – new/novel function – neomorphic Gain or loss has selective advantages (facilitate survival) - gain may –> add spot on wing to help camouflage, or strengthen wing - loss may –> help - eg. loss of hind limb in vertebrate snakes, whales. Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 5 6/28/17 Three-spine stickleback – pelvic fins. (evolutionary fore runner of hind limbs) Pelvic fins occur in two forms: Deep, open water – full spiny pelvis – protect from being swallowed by large predators Shallow water - reduced pelvis and shrunken spines – large spines grasped by dragon fly larvae (predator) Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 6 6/28/17 Evolution Observation: 1- Same phenotypic differences have evolved repeatedly in different fish populations over last 10K years (since last Ice Age) 2- Different fish populations are genetically close and can be inter-bred in the lab. 3- Use them to genetically map the gene(s) involved in stickleback pelvis size. 4- Found Pitx1 gene -> it has multiple functions in fish development 5- Found expression is selectively lost in tissues that give rise to the pelvic fin and spine. 6- Found change in an enhancer -> no change in Pitx1 gene amino acid sequence Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 7 6/28/17 Concept of Pleiotropy Pleiotropy - one gene has influence over multiple traits - the phenomenon of a single gene being responsible for a number of distinct and seemingly unrelated phenotypic effects. - Consequence: mutations in the gene’s protein coding sequence will have a simultaneous affect on multiple traits -> drastic, severe (dead) -> selected against Concept: - Mutations in regulatory sequences circumvent the severe, pleiotropic effects of coding sequence mutations. - If gene product is required at one time and place already -> can’t mutate structural gene sequence, but can modify expression via regulation mutation. - Common to have selective modifications of individual body parts via mutations in regulatory sequences. See also: Prud’homme et al. 2007. Emerging principles of regulatory evolution. PNAS 104; 8605-8612. Carroll, S.B. 2005. Evolution at two levels: genes and form. PloS Biology 3: 1159-1166. Wray, G.A. 2007. The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics 8: 206-216. Biol207 Dr. Locke’s section Lecture#31 -evolution Fall'11 page 8