* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download MEMBRANES
Spindle checkpoint wikipedia , lookup
Cytoplasmic streaming wikipedia , lookup
Cell nucleus wikipedia , lookup
Extracellular matrix wikipedia , lookup
Cell encapsulation wikipedia , lookup
Cellular differentiation wikipedia , lookup
Biochemical switches in the cell cycle wikipedia , lookup
Cell culture wikipedia , lookup
Signal transduction wikipedia , lookup
Organ-on-a-chip wikipedia , lookup
Cell growth wikipedia , lookup
Cell membrane wikipedia , lookup
Endomembrane system wikipedia , lookup
Cell Membrane, Cell Transport & Cell Division Chapter 7: Membrane Structure and Function Chapter 12: The Cell Cycle Plasma Membrane Plasma Membrane Structure   Boundary that separates the living cell from its surroundings Phospholipids are the most abundant lipid  Arranged in a bilayer    • hydrophobic region (tails) • hydrophilic region (heads) Exhibits , allowing some substances to cross it more easily than others The states that a membrane is a fluid structure with a “mosaic” of various proteins embedded in it Phospholipid Structure Selective Permeability       A cell must exchange materials with its surroundings, a process controlled by the plasma membrane Regulates what enters and leaves the cell Hydrophobic (nonpolar) molecules, such as hydrocarbons, can dissolve in the lipid bilayer and pass through the membrane rapidly Polar molecules, such as sugars, Maintains Allows for inside the cell of cells in same organism Fluid Mosaic Model  Phospholipid molecules can  Makes the membrane act like a  Fluid Mosaic Model Animation Membrane Cholesterol Cholesterol is a  Adds to plasma membrane  Helps keep fatty acid tails of phospholipids separated  Membrane Proteins Different proteins are embedded in the fluid matrix of the lipid bilayer  They determine most of the  Spread throughout the membrane like raisins in raisin bread  Allow membrane to “ ” with its environment  Membrane proteins are bound to the surface of the membrane  penetrate the hydrophobic core    Integral proteins that span the membrane are called The hydrophobic regions of an integral protein consist of one or more stretches of nonpolar amino acids, often coiled into Membrane proteins  Six major functions of membrane proteins:    Signal transduction     Intercellular joining Attachment to the cytoskeleton and extracellular matrix (ECM) *Includes a carbohydrate chain Carbohydrate chains   Carbohydrates on the external side of the plasma membrane vary among species, individuals, and even cell types in an individual Attached to phospholipids ( ) or proteins ( )  These a cell  Individual (Mr. Fusco cell)  Species (Human cell)  Type (kidney cell)  • Cells recognize each other by binding to surface molecules, often carbohydrate chains, on the plasma membrane LABEL THESE PARTS Cholesterol Glycolipid Phospholipid Glycoprotein Integral protein Carbohydrate chain Peripheral protein Inside/Outside of cell Cell Transport Because of the numerous amount of activities associated with the cell, substances must constantly move in and out of the cell  There are 2 types of cell transport:    Passive versus Active Passive Active    the concentration gradient (  From random molecular motion the  ) concentration gradient ( ) Concentration Gradient  From High  Low  NO energy needed Substances diffuse down their concentration gradient easily No work must be done to move substances the concentration gradient Work is required to move substances the concentration gradient From Low  High  Energy Needed Transport Types Passive  Diffusion  Osmosis  Facilitated Diffusion Active  Protein pumps  Endocytosis  Exocytosis Diffusion       Diffusion is the tendency for molecules to into the available space Although each molecule moves randomly, diffusion of a population of molecules may exhibit a net movement in one direction the concentration gradient:  HIGH  LOW require energy Results in (as many molecules cross one way as cross in the other direction) Diffusion Animation Osmosis  Osmosis is the across a selectively permeable membrane  Water diffuses across a membrane from the region of lower solute concentration to the region of higher solute concentration Simple Rule for Osmosis Salt is a When it is concentrated inside or outside the cell, it will draw the water in its direction Tonicity is the ability of a solution to cause a cell to gain or lose water  Three types of solutions:     solution solution solution Hypertonic or hypotonic environments create osmotic problems for organisms  , the control of water balance, is a necessary adaptation for life in such environments  Isotonic Solutions  water and solute (salt) concentrations inside and outside the cell  Dynamic Equilibrium  Water in = water out  Cells keep normal shape Solute concentration is the same as that inside the cell across the plasma membrane   Hypotonic Solutions  solute (salt) concentration outside than inside  Since salt sucks, water will move into the cell Solute concentration is less than that inside the cell   (swells) and may burst Plant Cells in Hypotonic Solution is the pressure inside plant cells  Cell walls help maintain water balance  A plant cell in a hypotonic solution swells until the wall opposes uptake    Cell is now If a plant cell and its surroundings are isotonic, there is no net movement of water into the cell  Cell becomes , and the plant may wilt Hypertonic Solutions  solute (salt) concentration outside than inside  Water sucked out of the cell  Solute concentration is greater than that inside the cell  Cells in Hypertonic Solutions Animal Cells  Plant Cells  Turgor pressure drops  In a hypertonic environment, plant cells lose water  Eventually, the membrane pulls away from the wall, a usually lethal effect called Facilitated Diffusion  Some molecules are so small that they pass through the membrane with little resistance  Oxygen & Carbon Dioxide  Lipid molecules (even though very large) also pass easily  In speed the passive movement of molecules across the plasma membrane  (transmembrane) provide corridors that allow a specific molecule or ion to cross the membrane   , for facilitated diffusion of water that open or close in response to a stimulus (gated channels) Active Transport Moves substances their concentration gradient: (Low  High) Requires energy in the form of Active transport is performed by specific proteins embedded in the membranes Protein Pumps    Protein 'pump' requires energy (ATP) to function Allows cells to maintain concentration gradients that differ from their surroundings The is one type of active transport system  Exchanges in animal cells  Transported molecules enter the in the membrane  The energy causes a shape change in the protein that allows it to move the molecule to the other side of the membrane Endocytosis  Ability of a cell to Ex. large molecules, groups of molecules, or whole cells Requires Energy Cell takes in macromolecules by forming vesicles from the plasma membrane There are three types of endocytosis:  Phagocytosis (“ ”)  Pinocytosis (“ ”)  Receptor-mediated endocytosis     Types of Endocytosis    In a cell engulfs a particle in a vacuole  The vacuole fuses with a lysosome to digest the particle In , molecules are taken up when extracellular fluid is “gulped” into tiny vesicles In , binding of ligands to receptors triggers vesicle formation  A is any molecule that binds specifically to a receptor site of another molecule Phagocytosis Pinocytosis Receptor-Mediated Endocytosis Exocytosis  Opposite of  endocytosis To expel wastes or secrete hormones  Requires energy  Transport vesicles  Many secretory  Endocytosis cells use exocytosis to and Exocytosis Animation Cell Division Life is based on the ability of cells to Rudolf Virchow (German physician) stated “omnis cellula e cellula” meaning cell division = one cell divides into two cells Why Cells Divide  Unicellular organisms  cell division = asexual reproduction (new organism)  Multicellular organisms  (single cell to trillions)   Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division Cell Cycle - Eukaryotes      Defined nucleus houses DNA as chromosomes, a condensed form of chromatin Most cell division results in daughter cells with identical genetic information (DNA) A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) Goal:  Chromosomes are from 1 parent cell (before division) to each daughter cell (after division) Includes:   Cell Cycle - Eukaryotes Cell Cycle      Interphase ( can be divided into 3 subphases:  (“first gap”)  (“synthesis”)  (“second gap”) The cell grows during all three phases  Makes proteins  Copies organelles Chromosomes are duplicated only during the S phase Mitosis is the division of the Cytokinesis is the division of the ) Eukaryotic Chromosomes  Chromatin  Long strands of DNA wrapped around proteins  In preparation for cell division, DNA is replicated and condenses to form chromosomes  Each duplicated chromosome has two , which separate during cell division  The is the narrow “waist” of the duplicated chromosome, where the two chromatids are most closely attached  Chromosomes must be copied before a cell divides  Each new cell must have a complete set  Contain thousands of genes  Vital for organisms to properly function Human Example  23 pairs of chromosomes   1 originally from mom, 1 from dad  Every time our body cells ( reproduce  ) Each NEW cell must also end up with 23 pairs of chromosomes Chromosome Duplication  One chromosome =  2 sister chromatids =   Exact copies Attached by a centromere  Cell division separates sister chromatids  Each new cell gets one copy of each chromosome Mitotic Phase   Mitosis is conventionally divided into five phases:  Prophase  Prometaphase*  Metaphase  Anaphase  Telophase Cytokinesis is well underway by late telophase *Some texts do not recognize this as a separate phase Mitosis Prophase Pro = “before”   Chromosomes Nucleolus and nuclear envelope     Microtubules that controls chromosome movement during mitosis Includes the centrosomes, the spindle microtubules, and the asters • An aster is a radial array of short microtubules During prophase, assembly of spindle microtubules begins in the centrosome, the microtubule organizing center Prophase Prometaphase  Nuclear envelope completely gone  Microtubules  Some spindle microtubules attach to the of chromosomes and begin to move the chromosomes • Kinetochores are specialized protein structures at the centromere Prometaphase Metaphase Meta = “with” (middle)   Chromosomes line up at  Also called the metaphase plate (midway point between the spindle’s two poles) Microtubules attach Anaphase Ana= “upward” or “back” (apart)  Sister chromatids Move along microtubules connected to kinetochore towards opposite ends of cell  Chromatids now chromosomes Other microtubules elongate cell   Telophase Telos = “end”  Reverse of prophase  Begins when chromosomes reach poles    Chromosomes “ (less condensed) ”   Genetically identical daughter nuclei form at opposite ends of the cell Cytokinesis Division of cellular contents  Cytoplasm  Organelles  In animal cells, cytokinesis occurs by a process known as  Cytokinesis  In plant cells, a  Formed from vesicles that pinch off of the Golgi body, move along microtubules, and join in the middle of the cell Some Animations  Mitosis Animation  Mitosis and Cytokinesis Animation  Mitosis Animation 2 Mitosis Ho-Down MITOSIS is a process that helps one cell become two It happens when a cell dies or makes some brand new This is how a cut heals and how a baby grows It works all o’er the body from your head down to your toes PROPHASE is the first phase where chromosomes you'll see Then comes METAPHASE where they line up perfectly After that is ANAPHASE where they are pulled apart Finally is TELOPHASE, cells split then go back to start Cell Cycle Controls The sequential events of the cell cycle are directed by a distinct , which is similar to a clock  The cell cycle control system is regulated by both internal and external controls  The clock has specific where the cell cycle stops until a goahead signal is received   G1, G2, M checkpoints Cell Cycle Controls  G1 checkpoint seems to be  A go-ahead signal at the G1 checkpoint allows cell to complete the S, G2, and M phases and divide  No go-ahead signal and the cell will exit the cycle, switching into a G2 checkpoint  Assesses success of  Triggers start of mitosis  Mitosis checkpoint  Assesses accuracy of mitosis  Occurs during  Cell Cycle Controls  Two types of regulatory proteins are involved in cell cycle control: Activity of cyclins and Cdks fluctuates during the cell cycle  MPF (maturation-promoting factor)  A cyclin-Cdk complex  Triggers a cell’s passage past the G2 checkpoint into the M phase  Also called “mitosis-promoting factor”  Cell Cycle Control Animation  Cancer    Disease of cell cycle DNA mutation changes genes that normally control growth   Cancer cells do not respond normally to the body’s control mechanisms Features of Cancer Cells  Normal cells divide about 50 times before dying   Aging, toxins (smoking), mutagens (UV light), DNA replication errors   Instead of “sticking” to neighbors, cancer cells become “round”, allowing for metastasis (spread)   Keep growing after touching neighbor Tumors  Cancer cells form  Masses of abnormal cells within otherwise normal tissue    Abnormal mass of essentially normal cells Remain at original site     Invade surrounding tissues Can • Move to other sites and create a new tumor (secondary) Cells send out signals for blood vessel production • Gives them food, oxygen, escape route Review Questions 1. Identify and describe the parts of the fluid mosaic model of the plasma membrane. 2. Describe the various regions of a phospholipid molecule as they apply to the arrangement of the plasma membrane. 3. Explain the role of cholesterol in the membrane. 4. Describe the 2 main types and 6 various functions of membrane proteins. 5. Differentiate between passive and active transport. 6. Explain the idea of a concentration gradient, along with moving down and against it. 7. Define tonicity and explain hypertonic, isotonic, and hypotonic solutions. 8. Define osmoregulation and turgor pressure. 9. Differentiate between diffusion, osmosis, and facilitated diffusion, naming the parts of the membrane that help these transports. 10. Differentiate between protein pumps, endocytosis, and exocytosis, naming that parts of the membrane that help these transports. 11. Name and describe 3 types of endocytosis. 12. Explain the importance of cell division. 13. Name the parts of the cell cycle and state the events that occur in each stage. 14. Differentiate between chromatin, chromosome, and chromatid. Review Questions 15. Define somatic cells. 16. Name the 5 steps to the cell cycle. 17. Define cytokinesis and explain how it differs in plant and animal cells. 18. Describe the 3 events that occur in prophase. 19. Name 2 events that occur in prometaphase. 20.Name 2 events that occur in metaphase. 21. Name the main event of anaphase. 22. Name 3 events that occur in telophase. 23. Explain how the cell plate forms in plant cell cytokinesis. 24. Name the 3 checkpoints of the cell cycle control system and explain what occurs in each step. 25. Differentiate between the roles of cyclins and cyclin-dependent kinases. 26. Define the importance of MPF. 27. Relate the formation of cancer to the cell cycle. 28.Name 4 major features of cancer cells. 29. Define tumor and differentiate between benign and malignant. 30.Define metastasis.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            