Download 7. Recombinant DNA Vectors

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

DNA repair wikipedia , lookup

DNA profiling wikipedia , lookup

DNA methylation wikipedia , lookup

Human genome wikipedia , lookup

Mutagen wikipedia , lookup

Primary transcript wikipedia , lookup

Metagenomics wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Gene wikipedia , lookup

SNP genotyping wikipedia , lookup

DNA virus wikipedia , lookup

Cancer epigenetics wikipedia , lookup

DNA polymerase wikipedia , lookup

Comparative genomic hybridization wikipedia , lookup

Zinc finger nuclease wikipedia , lookup

Genome evolution wikipedia , lookup

Adeno-associated virus wikipedia , lookup

Chromosome wikipedia , lookup

United Kingdom National DNA Database wikipedia , lookup

Point mutation wikipedia , lookup

Nucleosome wikipedia , lookup

DNA damage theory of aging wikipedia , lookup

Genealogical DNA test wikipedia , lookup

Gel electrophoresis of nucleic acids wikipedia , lookup

Bisulfite sequencing wikipedia , lookup

Replisome wikipedia , lookup

Genetic engineering wikipedia , lookup

Cell-free fetal DNA wikipedia , lookup

Nucleic acid double helix wikipedia , lookup

Microevolution wikipedia , lookup

Non-coding DNA wikipedia , lookup

Nucleic acid analogue wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

DNA supercoil wikipedia , lookup

Genomics wikipedia , lookup

Plasmid wikipedia , lookup

DNA vaccination wikipedia , lookup

Extrachromosomal DNA wikipedia , lookup

Designer baby wikipedia , lookup

Deoxyribozyme wikipedia , lookup

Epigenomics wikipedia , lookup

Cloning wikipedia , lookup

Cre-Lox recombination wikipedia , lookup

Genome editing wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Helitron (biology) wikipedia , lookup

No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Molecular cloning wikipedia , lookup

History of genetic engineering wikipedia , lookup

Genomic library wikipedia , lookup

Transcript
BIOL 311 Human Genetics
Recombinant DNA Methods: Restriction Enzymes, Cloning Vectors
Reading: Chap. 5 pp. 129-133; 139-146
Lecture Outline:
1. Restriction enzymes
2. Conventional cloning vectors and applications
3. Cloning vectors for genomics
Lecture:
1. Restriction enzymes
a. Discovered in bacteria and blue-green algae.
b. Enzymes that recognize and cleave specific sites on DNA. Are endonucleases--cleave
within a DNA duplex.
c. Function to protect organism from virus infections; the host's DNA is typically
modified by methylation to prevent restriction enzymes from damaging host DNA.
d. Useful type for recombinant DNA known as type II restriction enzymes.
e. Most of the commonly used restriction enzymes recognize 4-6 bp palindromic
restriction sites. "Rare cutters" such as Not I and Sfi I recognize larger (8 bp) sites and
are useful for genome mapping.
f. May produce 5' overhangs, 3' overhangs or blunt ends.
g. Uses of restriction enzymes: Create fragments for cloning (recombinant DNA), create
fragments for end-labeling--used in restriction mapping, genomic maps, RFLP analysis.
Examples:
EcoRI
Escherichia coli R factor
5'G AATT C3'
3'C TTAA G5'
5' overhang
PstI
Providencia stuarti
5'C TGCA G3'
3'G ACGT C5'
3' overhang
AluI
Arthrobacter luteus
5'AG CT3'
3'TC GA5'
Blunt end
Naming: 1st letter is genus name, 2nd and 3rd letter is species name, numbered in order
of discovery.
Small scale restriction digests: 20 ul reaction
2 ul of 10x restriction buffer (buffer, Mg2+, salts)
1-10 ul of DNA sample (0.5-1 ug)
1 ul (1-2 units) restriction enzyme
1
Each restriction enzyme unique; use a special buffer or for convenience, use a buffer
supplied by manufacturer that has been tested for its efficiency.
2. Conventional cloning vectors and applications
a. Different cloning vectors used for different applications:
plasmids--analyzing small DNA regions, expressing genes in cell
viruses--cloning larger regions (lambda virus), gene therapy (adenovirus)
artificial chromosome vectors (BACs, PACs, YACs)--cloning chromosomal regions
b. Conventional E. coli plasmid cloning vectors typically have:
origin of replication that functions in bacteria
antibiotic resistance gene(s)
selectable marker gene (often lacZ, encoding beta-galactosidase)
polylinker (also known as a multiple cloning site)
example: pUC18 or pUC19
One would typically clone gene into polylinker within marker gene using restriction
enzymes and DNA ligase, transform E. coli competent cells, then use antibiotic resistance
and the marker phenotype to identify recombinants.
c. Bacteriophage lambda is used to clone larger DNAs or complementary DNAs
capacity about 10-20 kb
replace internal section required for lysogeny, but not for lytic life cycle, with foreign
DNA
2
d. Cosmids
capacity 30-44 kb
plasmid vector with lambda packaging site (cos)
not as popular for use because they are unstable and prone to rearrangements
e. M13 virus
small single stranded virus of E. coli
replication intermediate (RF) is double-stranded and can be used as cloning vector (much
like a plasmid)
after transforming E. coli, single stranded virus is produced
single stranded DNAs readily sequenced using dideoxysequencing; also provide a
template for site directed mutagenesis protocols.
3. Cloning vectors for genomics
a. Capacity of conventional cloning vectors limiting for studying genomes, particularly
the human genome.
b. Large capacity vectors for cloning in bacterial make use of bacterial artificial
chromosomes (BACs) and bacteriophage P1 artificial chromosomes (PACs).
Figure of BAC
3
BAC:
Based on E. coli fertility factor (F-factor)
Low copy number per cell (1-2) compared to conventional plasmid vectors.
F plasmid vectors can accept large fragments, >300 kb.
Electroporation is used to introduce recombinants into E. coli.
Produce low yields of recombinant DNA
PAC:
Based on E. coli bacteriophage P1
Has a large genome that can accommodate 100 kb of DNA.
Recombinant P1 phage can be adsorbed onto E. coli host.
New hybrid vectors have features of BACs and PACs combined.
c. Yeast artificial chromosomes
Can accommodate megabase (1000-2000 kb) fragments.
Contain the critical elements of a yeast chromosome, including a centromere, two
telomeres and autonomously replicating sequences (ARS), important for replication.
Yeast spheroplasts (yeast with cell walls removed) can take up YACs.
Yield of transformants and yield of DNA both low.
Especially important for mapping large genomic regions.
Figure of YAC
4