Download Name: ____________ Pd.: ______ Date: plasmid genetic

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Zinc finger nuclease wikipedia , lookup

Frameshift mutation wikipedia , lookup

Mitochondrial DNA wikipedia , lookup

Primary transcript wikipedia , lookup

Mutagen wikipedia , lookup

Human genome wikipedia , lookup

Oncogenomics wikipedia , lookup

United Kingdom National DNA Database wikipedia , lookup

Cancer epigenetics wikipedia , lookup

Plasmid wikipedia , lookup

Genetic testing wikipedia , lookup

DNA damage theory of aging wikipedia , lookup

Genealogical DNA test wikipedia , lookup

Nucleic acid analogue wikipedia , lookup

Nucleic acid double helix wikipedia , lookup

Public health genomics wikipedia , lookup

Population genetics wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Gene therapy wikipedia , lookup

Gel electrophoresis of nucleic acids wikipedia , lookup

Genome evolution wikipedia , lookup

Genetically modified food wikipedia , lookup

Cell-free fetal DNA wikipedia , lookup

Genomics wikipedia , lookup

Human genetic variation wikipedia , lookup

DNA supercoil wikipedia , lookup

DNA vaccination wikipedia , lookup

Gene wikipedia , lookup

Epigenomics wikipedia , lookup

Mutation wikipedia , lookup

Deoxyribozyme wikipedia , lookup

Genomic library wikipedia , lookup

Non-coding DNA wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

Extrachromosomal DNA wikipedia , lookup

Cre-Lox recombination wikipedia , lookup

No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup

Molecular cloning wikipedia , lookup

Point mutation wikipedia , lookup

Genome (book) wikipedia , lookup

Helitron (biology) wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Genome editing wikipedia , lookup

Genetic engineering in science fiction wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Designer baby wikipedia , lookup

Microevolution wikipedia , lookup

Genetic engineering wikipedia , lookup

History of genetic engineering wikipedia , lookup

Transcript
Name: _____________________________________________________ Pd.: ________ Date: ______________________
Study Guide – Frontiers of Biotechnology
plasmid
genetic engineering
genetic engineering
fingerprint
recombinant
bacteria
DNA
genetic engineering
sticky ends
restriction enzyme
1. ____genetic engineering_______ can be use to move genes from the chromosomes of one organism into those
of another.
2. In the practice of ______ genetic engineering _________, scientists directly manipulate genes.
3. Before a donor gene is inserted into a plasmid, the plasmid is opened with a ___restriction enzyme_____.
4. The ______sticky end________ of a DNA fragment can combine with any other DNA fragment cut by the same
restriction enzyme.
5. Restriction enzymes are used to cut ___DNA_______ molecules into pieces.
6. A ring of DNA in a bacterium is called a _____plasmid_____________.
7. A DNA _____fingerprint___ is a pattern of bands made up of specific fragments from an individual’s DNA.
8. Scientists have used genetic engineering to produce ____bacteria____ capable of synthesizing human proteins.
9. _____ genetic engineering __________ is the application of molecular genetics for practical purposes.
10. ____recombinant______ DNA is usually composed of DNA segments obtained from two different organisms.
clone
selective breeding
desired traits
polymerase chain
reaction
gel electrophoresis
inbreeding
selective breeding
gene therapy
genetic code
selective breeding
11. Genetic engineering is possible because all organisms are based on the same ______genetic code__________.
12. A genetically identical copy of a gene or organism is a ____clone______.
13. _____Gel electrophoresis______ uses electricity to sort DNA fragments based on their size.
14. Scientists use _________PCR____________ to make an amount of DNA that is large enough to study.
15. ____gene therapy________ involves treating a genetic disorder by replacing a defective gene with a functional
gene.
16. Luther Burbank produced over 800 varieties of plants by _____selective breeding_____.
17. Horse breeds, cat breeds, and dog breeds have all been produced by __________ selective breeding ___.
18. Selective breeding produces _desired traits______________ in offspring.
19. Mating cats that have long hair with cats that have long tails is an example of ___ selective breeding ________.
20. ___Inbreeding________ is most likely to bring together two recessive alleles for a genetic defect.
hybridization
inducing mutations
selective breeding
polyploidy
genetic engineering
mutations
gel electrophoresis
inbreeding
restriction enzyme
diversity
21. The crossing of buffalo and cattle to produce beefalo is an example of __hybridization_________.
1
22. ____Inbreeding______ and hybridization are opposite processes.
23. Scientists produced oil-eating bacteria by _____induced mutation__________ in bacteria.
24. The ultimate source of genetic variability in organisms comes from ____mutations__________.
25. Breeders induce mutations in organisms to increase ___diversity_______ in populations.
26. __Polyploidy_____ instantly results in a new plant species because it changes a species’ number of
chromosomes.
27. Mutations are useful in __________ selective breeding___________ because they can be used to enhance the
process of hybridization.
28. The figure below shows a ______restriction enzyme_______ producing a DNA fragment.
29. One function of _________gel electrophoresis____________ is to separate DNA fragments.
30. The process of making changes in the DNA code of a living organism is called ___genetic engineering________.
restriction enzyme
variability
transformation
transgenic
asexual
clone
recombinant DNA
sheep
genetic engineering
mutation
31. A DNA molecule produced by combining DNA from different sources is known as _____recombinant DNA_____.
32. During __transformation_______, a cell takes in DNA from outside the cell.
33. What kind of technique to scientists use to make transgenic organisms? Genetic engineering___________
34. Bacteria that contain human genes in their plasmids are ______trangenic_______ bacteria. An advantage of
using transgenic bacteria to produce human proteins ins that transgenic bacteria can produce human proteins in
large amounts.
35. To produce transgenic bacteria that make insulin, scientists must first use a ____restriction enzyme_________ to
cut out the insulin gene from human DNA.
36. The Scottish scientist Ian Wilmut cloned a ____sheep (Dolly)________.
37. A change in an organism’s genetic material is a _____mutation_________.
38. Mutations are the ultimate source of genetic ___variability__________.
39. A member of a population of genetically identical cells produced from a single cell is a ___clone_______.
40. Cloning is a type of _____asexual_____ reproduction.
genome
proteins
gene therapy
seed
restriction enzymes
genetic engineering
hybridization
fingerprinting
plasmid
recombinant
2
41. The process of inbreeding is the opposite of the process of _____hybridization______.
42. A circular piece of DNA inside a bacterium cell is called a ____plasmid________.
43. A strand of DNA formed by the splicing of DNA from two different species is called ____recombinant_____ DNA.
44. DNA ______fingerprinting__________ has been used in criminal investigations because DNA analysis is believed
to allow investigators to distinguish body cells of different individuals, who are unlikely to have the same DNA.
45. A __genome_____ is an organism’s collection of genes.
46. Transferring normal human genes into human cells that lack them is called _____gene therapy__________.
47. Some scientists want to genetically engineer apples to produce the insecticide pyrethrin. In order to ensure that
all offspring from the original tree also produce apples with the chemical, they must be sure that the gene that
produces pyrethrin is in the cells of the ______seed_______________.
48. A scientist wants to insert a gene into a plasmid as shown in the diagram below. In order to open the plasmid to
insert the gene, the scientist must use _______restriction enzyme__________________.
49. Bt soybeans are transgenic. These soybean plants contain a bacterial gene in their cells that codes for a natural
pesticide. This is an example of _________genetic engineering_______________.
50. The use of genetic engineering to transfer human genes into bacteria allows the bacteria to produce human
protein______.
3