* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The response of cat visual cortex to flicker stimuli of variable frequency
Emotional lateralization wikipedia , lookup
Optogenetics wikipedia , lookup
Eyeblink conditioning wikipedia , lookup
Neuroesthetics wikipedia , lookup
Surface wave detection by animals wikipedia , lookup
Animal echolocation wikipedia , lookup
Neuroethology wikipedia , lookup
Neural coding wikipedia , lookup
Time perception wikipedia , lookup
Neural correlates of consciousness wikipedia , lookup
Neural oscillation wikipedia , lookup
Response priming wikipedia , lookup
Metastability in the brain wikipedia , lookup
Psychophysics wikipedia , lookup
Stimulus (physiology) wikipedia , lookup
C1 and P1 (neuroscience) wikipedia , lookup
Perception of infrasound wikipedia , lookup
European Journal of Neuroscience, Vol. 10, pp. 1856–1877, 1998 © European Neuroscience Association The response of cat visual cortex to flicker stimuli of variable frequency Günter Rager and Wolf Singer1 University Fribourg, Institute of Anatomy, 1, rue A. Gockel, CH-1700 Fribourg, Switzerland 1Max Planck Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt/Main, Germany Keywords: flicker, frequency response, oscillations, visual cortex Abstract We examined the possibility that neurons or groups of neurons along the retino-cortical transmission chain have properties of tuned oscillators. To this end, we studied the resonance properties of the retino-thalamo-cortical system of anaesthetized cats by entraining responses with flicker stimuli of variable frequency (2–50 Hz). Responses were assessed from multi-unit activity (MUA) and local field potentials (LFPs) with up to four spatially segregated electrodes placed in areas 17 and 18. MUA and LFP responses were closely related, units discharging with high preference during LFP negativity. About 300 ms after flicker onset, responses stabilized and exhibited a highly regular oscillatory patterning that was surprisingly similar at different recording sites due to precise stimulus locking. Fourier transforms of these steady state oscillations showed maximal power at the inducing frequency and consistently revealed additional peaks at harmonic frequencies. The frequencydependent amplitude changes of the fundamental and harmonic response components suggest that the retinocortical system is entrainable into steady state oscillations over a broad frequency range and exhibits preferences for distinct frequencies in the θ- or slow α-range, and in the β- and γ-band. Concomitant activation of the mesencephalic reticular formation increased the ability of cortical cells to follow high frequency stimulation, and enhanced dramatically the amplitude of first- and second-order harmonics in the γ-frequency range between 30 and 50 Hz. Cross-correlations computed between responses recorded simultaneously from different sites revealed pronounced synchronicity due to precise stimulus locking. These results suggest that the retino-cortical system contains broadly tuned, strongly damped oscillators which altogether exhibit at least three ranges of preferred frequencies, the relative expression of the preferences depending on the central state. These properties agree with the characteristics of oscillatory responses evoked by non-temporally modulated stimuli, and they indicate that neuronal responses along the retino-cortical transmission chain can become synchronized with precision in the millisecond range not only by intrinsic interactions, but also by temporally structured stimuli. Introduction Neuronal networks have a tendency to engage in synchronous, oscillatory activity. The extent to which neurons synchronize dominant oscillation frequencies differs for different structures of the brain and exhibits a marked state dependency (for review see Steriade et al., 1990; Basar & Bullock, 1992; Singer, 1993; McCormick & Bal, 1994; Contreras & Steriade, 1997). Frequencies below 5 Hz (delta) are observed during pathological states, e.g. coma, but also during anaesthesia and slow wave sleep. Activity in the theta-band prevails in limbic structures during exploratory behaviour. Oscillatory activity in the 10 Hz range, also known as alpha activity, occurs during drowsiness or states of relaxation, and is particularly pronounced in thalamic nuclei and cortical areas involved in the processing of sensory information. Up to this frequency range, oscillatory activity can readily be recorded with macro-electrodes, which indicates that a large number of neurons must have synchronized their activities at the respective oscillation frequencies. During states characterized by high levels of arousal and attention, conventional electroencephalo- Correspondence: W. Singer, as above. Received 29 July 1997, revised 14 January 1998, accepted 16 January 1998 gram (EEG) recordings exhibit low amplitude fluctuations whose Fourier spectrum covers a broad range of frequencies extending up to 60 Hz and more. This pattern is commonly referred to as desynchronized EEG, but analysis with refined methods has revealed that regular oscillatory activity also occurs during these desynchronized states, whereby the dominant oscillatory activity is in the β- and γ-range (Munk et al., 1996; Steriade et al., 1996; Steriade & Amzica, 1996). Furthermore, there is evidence that under these conditions, groups of cortical neurons involved in ongoing sensory-motor processing can synchronize their discharges with a precision in the millisecond range and over large distances (Bressler & Nakamura, 1993; Murthy & Fetz, 1996a,b; Bressler, 1996; Munk et al., 1996; Roelfsema et al., 1997). These results suggest the action of two, perhaps related mechanisms: (i) a mechanism that causes an oscillatory patterning of neuronal responses; and (ii) a process that synchronizes distributed neuronal discharges. To further characterize the dynamic properties and state dependency The response of cat visual cortex to flicker stimuli 1857 of the mechanism responsible for this oscillatory modulation, we investigated the frequency response of the retino-cortical pathway to temporally modulated input activity, using the cat visual system as a model. We were particularly interested to see whether the retinothalamo-cortical system exhibits preferences for certain oscillation frequencies and whether these preferences depend on the state of central core modulatory systems. Evidence for resonance in distinct frequency bands has been obtained previously by studying the steady state responses to flicker in EEG recordings from human subjects (Regan & Spekreijse, 1986). In addition, we examined how the precision with which retinal stimuli synchronize cortical responses compares to that achieved by internal synchronizing mechanisms. This comparison is relevant for the following reasons. It had been proposed that internal synchronization of neuronal discharges may serve to select distributed neuronal responses and to ‘bind’ them together for further joint processing (von der Malsburg, 1985; Gray et al., 1989; for review see Singer & Gray, 1995). This suggests the possibility that the synchronous responses evoked by simultaneously appearing stimuli may also be used for binding. Psychophysical studies actually indicate that visual stimuli get bound perceptually if they are coincident in time (Ramachandran & Rogers-Ramachandran, 1991; Leonards et al., 1996; Leonards & Singer, 1997; but see Kiper et al., 1996). The synchronicity achieved by internal synchronization has a precision in the millisecond range and we wondered whether a similar degree of precision is attained by stimulus-induced synchronization. In order to study these questions, we recorded local field potentials (LFPs) and multi-unit activity (MUA) with multiple electrodes from areas 17 and 18 of anaesthetized cats while presenting flicker stimuli at frequencies ranging from 2 to 50 Hz. For the investigation of the dependence of frequency response on central states, we activated the mesencephalic reticular formation (MRF) in conjunction with the light stimuli. Responses obtained from the various electrodes were then subject to auto- and cross-correlation analysis for the assessment of oscillatory patterning and synchronization. Materials and methods Animal preparation Data were obtained from four adult (. 1 year) cats. Surgical techniques and recording procedures were similar to those described in detail previously (Engel et al., 1990). Anaesthesia was induced with an intramuscular injection of ketamine hydrochloride (Ketanest®, Parke-Davis, Berlin, Germany; 10 mg/kg) and xylazine hydrochloride (Rompun®, Bayer, Leverkusen, Germany; 2.5 mg/kg) and continued after tracheotomy throughout the experiment by ventilation with a mixture of 70% O2 and 30% N2O, supplemented with 0.2–1% halothane (Hoechst, Frankfurt/Main, Germany). Trepanations were made to provide access to areas 17 and 18, and for the placement of epidural EEG electrodes and MRF stimulating electrodes (MRF; Horsley Clark coordinates H: 8 mm; A: 2 mm and L: 3 mm). Once all surgical interventions were terminated, the head was fixed with a bolt to the stereotaxic apparatus, eye and ear bars were removed, and muscle relaxation was induced by continuous i.v. infusion of hexacarbocholinbromide (Imbretil®, Hormon-Chemie, Munich, Germany; 0.7 mg/kg/h). End-tidal CO2 was kept within the range of 3.5–4.0% and body temperature at 38 6 0.2 °C. The EEG, electrocardiogram (ECG) and pulmonary pressure were continuously monitored. Recording and stimulation MUA and LFP responses were recorded using glass-coated Tungsten electrodes. The location of the recording electrodes was assessed from electrolytic lesions in Nissl-stained frontal sections of blocks containing the visual cortex. The flicker stimuli were generated with a strobe that evenly illuminated a frosted tangent screen positioned 1.14 m in front of the cat’s eye plane. We applied either whole-field stimuli or stimuli confined to the receptive fields (RFs) of the respective recording sites. In the latter case, the screen was covered with black paper containing rectangular apertures whose location, size and orientation matched the RFs of the MUA responses recorded by the different electrodes. These RFs had previously been plotted with hand-held stimuli and were all located within 10 ° of the centre of gaze. The intensity (luminance) and duration of the stimuli were 2.2 mW/ 1337 cm2 and 20 µs, respectively. In the first two experiments, the frequency of the flicker stimuli was adjusted by varying the intervals between flashes in steps of 2 ms between 60 and 80 ms, and in larger steps beyond 80 ms. In the last two experiments, flicker frequencies were increased in steps of 2 Hz from 2, and respectively, 6 to 50 Hz. In cases where stimuli were presented together with MRF stimuli, each flash was paired with a single electrical stimulus that was applied either to the right or left MRF with coaxial electrodes (10 V, 50 µs). Each series of flicker stimuli lasted between 3 and 4 s, and was repeated 10 times at intervals of 10 s. Responses were recorded and digitized over epochs of 5000 ms comprising stimulus-free epochs before and after the flicker, so that initial entrainment, steady stateand off-responses could be studied. Data analysis MUA responses were obtained by amplification and filtering the electrode signals in the frequency range of 1–3 kHz. This signal was fed through a Schmitt trigger whose threshold was set to at least three times the noise level. The trigger pulses were digitized at 1 kHz and then stored on disk. LFP responses were obtained by filtering the electrode signal from 1 to 100 Hz. They were also digitized at 1 kHz and stored together with the MUA. For the evaluation of MUA responses, peri-stimulus time histograms (PSTH) were compiled for 10 successive stimulus presentations with a bin width of 1 ms. Then, a window was placed over the steady state phase of the response (from 500 to 3500 ms), and auto-correlation functions (ACF) and cross-correlation functions (CCF) were computed within this window. In order to assess the frequency characteristics of the responses, CCFs were calculated between the neuronal responses and the strobetrigger. Then, a window of 1000 ms was placed over the crosscorrelogram starting at T0 and the Fast Fourier Transform (FFT) was computed for this window. The obtained amplitude spectra served as a basis for surface plots in which the frequency spectrum of the responses (0–100 Hz) is represented on the X-axis, the flicker frequency of the respective stimulus (2–50 Hz) on the Y-axis, and the amplitude of the spectra on the Z-axis. To allow for a direct comparison between response components at fundamental and harmonic frequencies, amplitude distributions of the fundamental, and first and second harmonic were plotted as a function of stimulus frequency. In addition, the ratios of the first harmonic over the fundamental and the second harmonic over the fundamental were computed. In order to determine the temporal precision with which the stimuli synchronized neuronal responses, we selected 1-s-long intervals from the steady state responses and computed CCFs between MUA responses recorded from pairs of electrodes located either within the same area (17 or 18) or in different areas (17 and 18). These CCFs were then averaged over 10 successive sweeps. In order to assess whether the synchronization of responses was solely due to stimulus locking or whether internal synchronizing mechanisms contributed, in addition we also computed CCFs between two 1-s-long response epochs that © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1858 G. Rager and W. Singer were offset by 1 s, thus correlating responses evoked by flashes belonging to different, temporally shifted stimulus trains (shift predictor, Gerstein & Perkel, 1972). Correlations persisting in these shift predictors are exclusively due to stimulus locking. Thus, by comparing correlograms computed from the original data with shift predictor correlograms, it is possible to assess to which extent correlations are due to internal synchronizing mechanisms and stimulus locking, respectively. For the evaluation of LFP responses, these were first averaged over 10 successive trials. These averages were computed either over the full length of the response or for windows placed over the initial response phase (first 200 ms after onset of the flicker stimulus), steady state phase, or the phase around stimulus offset (from 100 ms before to 200 ms after the end of the flicker stimulus). For the steady state phase we computed, in addition, LFP averages within windows of 6 200 ms, using either the spike discharges (spike-triggered averages) or the flashes (stimulus-triggered averages) as trigger. For the spectral analysis, FFTs were computed from single sweep LFP responses with a resolution of 1 ms for a frequency band of 0– 150 Hz and for windows from 500 to 1499 ms after stimulus onset. These FFTs were subsequently averaged over 10 successive presentations of the same stimulus and average amplitude spectra were plotted in the same manner as was described for MUA analysis above. Results MUA responses to whole field flicker At low flicker frequency (2 Hz), MUA responses to whole field stimuli resemble responses to single flashes. They are biphasic (Fig. 1A,B). The first component consists of one or two brief bursts which peak at µ 10–120 ms post-stimulus and are followed by an interval of reduced firing. The second component is more sustained, starts at µ 200 ms, reaches a maximum between 300 and 500 ms, and then decays slowly over the next 200–300 ms. No differences were noted between responses recorded from different electrodes located within the same area, but in responses from area 18, the second, sustained component was more pronounced than in responses from area 17. At this low stimulus frequency, there were no significant further after-discharges at the end of the flicker sequence (Fig. 1C). As flicker frequency increased, the tonic response component became truncated more and more by the inhibition following the phasic response to the respective next stimulus. Moreover, there was an indication for an entrainment at the beginning of the response, the later bursts being larger in amplitude than the first. Moreover, a tonic off-response appeared at the end of stimuli above 6 Hz. Examples of responses to 6 Hz flicker are shown in Fig. 1D,F. As flicker increased above 10 Hz, tonic response components became more and more suppressed, but the phasic discharge followed reliably up to 50 Hz, the highest of the tested frequencies. Usually it took µ 200–300 ms after stimulus onset until the cells engaged in a regular, stimulus-locked bursting pattern. During the initial phase, the responses tended to be less well modulated, bursts occurred with variable amplitudes and were still intermingled with more sustained response components. This is exemplified in Fig. 1E,G for responses to 20 Hz flicker. Auto- and cross-correlation analysis of MUA As expected from the stimulus-locked discharge patterns, ACFs computed from the steady state phase of the flicker response exhibited a periodic modulation, whereby the intervals between the maxima corresponded to the respective flicker frequency. However, in most ACFs, especially at flicker frequencies below 40 Hz, there were additional peaks of smaller amplitude which occurred at regular intervals between the principal peaks. The amplitude of these additional peaks varied with stimulus frequency and could even differ between recording sites for a given flicker frequency. Typically, the number of additional peaks ranged from one to three, indicating that grouped discharges had not only occurred at intervals corresponding to the flicker frequency, but also at shorter intervals, corresponding to the first, second and sometimes even third harmonic of the actual flicker frequency. At flicker frequencies between 8 and 20 Hz, two satellite peaks were usually distinguished, while in general only one peak remained at higher frequencies. No difference was observed between areas 17 and 18 with respect to the occurrence of these satellite peaks: examples of ACFs are shown in Fig. 2 for two groups of simultaneously recorded neurons, both from area 17, for flicker frequencies of 10, 20, 30 and 40 Hz. Some ACFs (see, e.g. Fig. 2A) show, in addition to the phasic modulation, a single hump which is centred around zero and decays slowly over shift intervals of 200– 300 ms. This reflects periodic fluctuations of response amplitudes which were also apparent in the corresponding PSTHs. These fluctuations occurred in a frequency range of µ 2 Hz and appeared unrelated to the frequency of the flicker. The CCFs computed between MUA responses and the stimulus triggers revealed that the responses were precisely locked to the stimuli: all CCFs had a prominent peak centred around zero and were periodically modulated at intervals corresponding to the flicker frequency. They also exhibited additional, regularly spaced satellite peaks whose number and position corresponded to the occurrence of the various harmonic response components that were present in the ACFs of the respective responses. As expected from the precise stimulus locking of the responses, CCFs computed between MUA recorded from different electrodes again showed a prominent oscillatory modulation with a large centre peak and side peaks whose amplitude was related to the stimulation frequency and its harmonics in the same way as in the ACFs and CCFs computed between MUA and trigger pulses. In the CCFs between MUA responses from different electrodes, the amplitude and width of the centre peak provide a measure of the temporal precision with which the flashes synchronized the responses at the different recording sites. We have investigated such CCFs for three electrode pairs located within area 17, for one pair in area 18, and for three pairs distributed across the two areas. In all cases, responses were evoked by whole-field stimuli. Apart from the fact that responses recorded across the two areas were slightly less synchronized (smaller and broader centre peak) than responses recorded within the same area, we noted no significant differences among the CCFs computed between the various electrode pairs. Figure 3 shows two representative examples, one for an electrode pair located within the same area (A 17), the other for electrodes located in different areas. These plots reveal that the amplitude and width of the centre peak and satellite peak of the CCFs depend strongly on stimulation frequency. At frequencies below 8 Hz, CCFs exhibit broad smoothly modulated peaks whose spacing reflects stimulation frequency. Beyond 8 Hz, these peaks become larger and sharper, and additional peaks appear whose spacing corresponds to harmonics of the flicker frequency. However, this increase in the precision of stimulus locking is not monotonously related to stimulation frequency. Synchronicity is high in the frequency band between 8 and 10 Hz, decreases for 12–14 Hz, becomes particularly pronounced in the range from 16 to 28 Hz, and then decreases again for higher frequencies with occasional recovery of the intra-areal correlations at frequencies beyond 40 Hz. Comparison with CCFs computed across successive response segments (shift © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 The response of cat visual cortex to flicker stimuli 1859 predictors, see Materials and methods) revealed no difference between the actual and shifted CCFs, indicating that the synchronization was exclusively due to stimulus locking and not enhanced further by internal synchronizing mechanisms. Spectral analysis of multi-unit activity In order to assess more quantitatively the frequency response of cortical cell groups, the CCFs computed between steady state MUA responses to whole-field stimuli and the flash triggers were subject to Fourier analysis. A 1 s window was placed over the CCFs and a FFT of the correlograms was computed. As expected, the Fourier spectra had a sharp and prominent peak at the frequency of the stimulus. Further well-delineated peaks were present at multiples of the stimulus frequency (Figs 4 and 5). The absolute and relative amplitudes of these peaks varied substantially with stimulus frequency, but were similar for responses obtained from different recording sites. To allow for a comprehensive overview of the frequency response of MUAs at all tested flicker frequencies, the amplitude spectra of responses from one recording site in area 17 (Fig. 4A,B) and one in area 18 (Fig. 5A,B) are represented together both as surface and contour plots. These plots show that responses to all stimulus frequencies contain, in addition to the fundamental, at least a first harmonic. At stimulus frequencies below 30 Hz second harmonics are also clearly distinguishable, and at frequencies below 20 Hz higher order harmonics can also be identified. There are virtually no components at response frequencies lower than the stimulus frequency. The spectral analysis of MUA responses does not reveal any activity in this zone. Profiles along the fundamental, first and second harmonic (Figs 4C and 5C) show the variation in amplitude of the spectra. There is a first peak between 4 and 8 Hz, which is followed by a sharp decline around 12 Hz. Then a much higher peak is present between 16 and 30 Hz. From 30 to 50 Hz, the amplitude fluctuates on a high level. Comparison of the amplitudes of the first and second harmonic with that of the fundamental shows that harmonics are particularly pronounced at a stimulus frequency of µ 12 Hz reaching amplitudes 10 times larger than that of the fundamental. At lower and higher stimulus frequencies, the harmonics are usually smaller or of the same size as the fundamental (Figs 4D and 5D). Field potential responses to whole field flicker Field potentials recorded intracortically with microelectrodes reflect with great fidelity the bulk activity of neurons in the vicinity of the electrode tip (for review see Mitzdorf, 1985). Field negativity corresponds mainly to ligand and voltage-gated inward currents, while positivity is primarily due to passive loop closing outward currents related to remote excitatory events, and to a minor extent, to IPSP-related outward currents. Thus, there is usually a tight correlation between LFP negativity and excitatory responses (see, e.g. Gray & Singer, 1989). This is also true in the present case: comparison of averaged MUA and LFP responses revealed that neuronal discharges were closely time-locked to LFP negativities at all flicker frequencies. Accordingly, spike-triggered averages of LFP responses show that maximum firing probability coincides with the steepest slope of the rising phase of the LFP negativity (Fig. 6). These relations between MUA and LFP responses were virtually the same at all recording sites, and LFPs recorded simultaneously from different sites closely resembled each other, even for recording sites in different areas. Because of this consistency and because of the continuous nature of LFPs, which makes them more suitable for spectral analysis than MUA activity, we based the quantification of frequency characteristics on LFP responses. At low flicker frequencies (, 4 Hz) the LFP responses closely resembled the well known flash-evoked potential (Fig. 6). It consisted of an initial, sharply rising negativity that peaked at µ 130 ms poststimulus and was followed by one or two additional negative deflections riding on a large, positive potential. This positive potential peaked at µ 200 ms and was followed by another, slowly rising and decaying negativity of large amplitude. As shown in Fig. 6, the early and late negativities correspond to the phasic and tonic MUA responses, respectively, and the positivity coincides with the period of reduced firing after the initial phasic discharges. At higher frequencies (. 4 Hz) the responses to the first and subsequent stimuli of a series began to differ from one another, and it took µ 200– 300 ms until the steady state responses emerged. Up to frequencies of 6 Hz (Fig. 6), the positive components of the LFP were still pronounced, but as frequencies increased these positivities became more and more suppressed, and at the same time the negative response components increased in amplitude up to frequencies of µ 30 Hz. Up to this frequency, each flash gave rise to more than one negativity, whose number decreased as frequency increased. Beyond 30 Hz, the responses became more uniform consisting essentially of a single negative deflection. At frequencies above 10 Hz, an off-response appeared in addition after the end of the stimulus train, but there was no evidence that oscillatory activity outlasts the stimulus. Spectral analysis of field potentials To quantify the frequency response of cortical cell groups, segments of LFP responses taken from the steady state phase of the response were subject to Fourier analysis (see Materials and methods). As in the MUA data, the Fourier spectra had a sharp and prominent peak at the frequency of the stimulus (fundamental), and at the first and second harmonics (Figs 7 and 8). The absolute and relative amplitudes of these peaks were similar for responses obtained from different recording sites both in areas 17 and 18. In contrast to the MUA responses, however, there are also always components at response frequencies lower than the stimulus frequency. These are concentrated in a frequency range of 1–5 Hz, but there is no clear evidence that they might represent subharmonics, as their spectral composition does not depend in a systematic way on stimulus frequency. Typically, and this holds for all experiments, the amplitude of all components tended to decrease with increasing stimulus frequency for stimuli above 10 Hz, but this decay was not monotonous, as can be seen particularly well in Figs 7C and 8C where the frequency-dependent changes in amplitude are plotted for the fundamental, and first and second harmonic. The fundamental component was maximal at µ 6–8 Hz, then decayed rapidly as frequencies approached 12–14 Hz, was again enhanced between 16 and 30 Hz, and then fell off slowly towards 50 Hz, the highest frequency tested. The amplitude of the first harmonic was maximal at stimulus frequencies of µ 2 Hz, dropped to a minimum at frequencies of µ 4–8 Hz, increased again for stimulus frequencies of µ 12–30 Hz and then decayed slowly for higher frequencies. The modal distribution of the power of the second harmonic was even more complex. Its amplitude was maximal at a stimulus frequency of 2 Hz, which corresponds to a response frequency of 6 Hz, decreased for stimulus frequencies of µ 4–6 Hz, rose again for frequencies of µ 10–16 Hz, corresponding to a response frequency of 30–48 Hz, and after a further reduction at 14–18 Hz, showed a third plateau at stimulus frequencies of 22–30 Hz. The ratio of the first harmonic over the fundamental and second harmonic over the fundamental was highest at µ 12 Hz, and very low between 6 and 8 Hz (Figs 7D and 8D). To show the relation between the amplitude of fundamental and harmonic oscillations on the one hand, and the actual frequency of © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1860 G. Rager and W. Singer © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 The response of cat visual cortex to flicker stimuli 1861 FIG. 2. Autocorrelograms of steady state MUA responses to stimulus frequencies of 10 Hz (A), 20 Hz (B), 30 Hz (C) and 40 Hz recorded from two different electrodes in area 17 (position 1, upper boxes; position 3, lower boxes). In each of these examples the autocorrelation is computed for shift-intervals ranging from –200 to 1 200 ms for a window ranging from 500 to 3500 ms. FIG. 1. PSTHs of MUA responses (n 5 10) to flicker of 2 Hz (A–C), 6 Hz (D,F) and 20 Hz (E,G) from two recording positions in areas 17 and 18 located within the representation of the area centralis. (B,C) and (F,G) show response segments at an expanded time scale, taken from the respective response sequences at times indicated on the abscissa. Squares below the histograms indicate the timing of flashes. The dimensions for the coordinates in (B–G) are the same as in (A). © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1862 G. Rager and W. Singer the response components on the other, the amplitude distributions were replotted as a function of response frequency rather than stimulus frequency in Figs 7E and 8E. This revealed that all response components have their maximal power at a response frequency of µ 6–8 Hz: a further, albeit much smaller, increase in amplitude occurs for the fundamental at a response frequency of µ 16–30 Hz, for the first harmonic at µ 25–60 Hz and for the second harmonic at µ 30– 40 Hz. Again, no major differences were noted between the amplitude distributions in areas 17 and 18. Taken together, these results indicate that under anaesthesia the visual system exhibits a preference to engage in oscillatory activity in the frequency ranges of 6–8 Hz and 16–40 Hz. The effect of reticular stimulation In order to determine the dependence of the frequency response of the thalamo-cortical system on global changes of neuronal excitability, we investigated the effects of MRF stimulation on MUA and LFP responses to whole-field flicker. As exemplified in Figs 9 and 10, LFP responses retained their basic characteristics when MRF stimuli were added, but there were major differences in the frequency response. At all stimulation frequencies the steady state response phase was reached faster and the amplitudes of the responses showed less fluctuations than without MRF stimulation (data not shown). In the spectra, the trough between the first (6–8 Hz) and second (µ 16 Hz) maximum in response amplitude was reduced because of a relative increase in power of responses in the α-range. The ratio of the first harmonic over the fundamental was no longer maximal at 12 Hz, but now peaked between 34 and 42 Hz. Thus, the relative amplitudes of the harmonic response components increased dramatically for response frequencies in the γ-range, suggesting that the system now engages preferentially in oscillatory activity in this frequency range. At the same time, there was a reduction of frequency components other than the fundamental and various harmonics, in particular of frequencies below the respective fundamental. These effects were similar in areas 17 and 18. Comparison between whole-field and RF stimulation Switching from whole-field to RF stimuli reduced the attenuation of response amplitudes that occurred with higher stimulation frequencies (. 10 Hz) [Fig. 11]. This effect was equally pronounced in MUA and LFP responses recorded from both areas 17 and 18, and occurred for both the fundamental and harmonic response components. In the example shown in Fig. 11, which represents MUA responses from A 17, there is even an enhancement of responses with increasing stimulation frequency. With whole-field stimuli (Fig. 12) the fundamental response component is maximal around a stimulation frequency of 10 Hz and declines at higher frequencies. With whole-field stimuli the peaks reflecting the various resonance frequencies decrease with stimulation frequencies above 15 Hz, while they stay essentially unattenuated up to stimulation frequencies of 25 Hz with RF stimuli. Frequency-dependent phase locking Another variable that we considered as being of interest for the description of the frequency response of the system is the extent to which the responses are phase locked to the individual stimuli. The extent of phase locking is reflected by the latency jitter of responses to individual flashes. On average, large jitter is expected to lead to a smearing of the respective response components and a decrease of the amplitudes when responses are averaged over different trials. In order to quantify the degree of phase locking we compared the amplitude spectra of averaged responses with those obtained from single sweep analysis. The ratios of the former over the latter give the percentage of phase locking. Phase locking of the fundamental response component was found to be nearly perfect over the whole frequency range tested (ù 85% without and ù 95% with MRF stimulation). For the harmonics, phase locking was less successful in the range of response frequencies from 12 to 30 Hz (minimum 55%) and µ 60 Hz (80%), but nearly perfect (µ 90%) for the remaining frequency range (Fig. 13A). When the MRF was stimulated simultaneously with the global visual stimulus, phase locking was improved (Fig. 13B). Only in the second harmonic was a trough seen at 20 Hz (60%). For the remaining frequency range, phase locking was better than 80%. Phase locking during local stimulation was comparable and in some cases even better than during global stimulation (data not shown). Discussion We have deliberately based our analysis of the frequency response of the visual cortex on signals which reflect group activity in order to make the results comparable with data on internally generated oscillatory activity. Endogenous oscillatory activity is also a group phenomenon that emerges from cooperative interactions among reciprocally coupled neurons and is associated with the synchronization of local clusters of neurons (see Introduction). In this respect, the oscillatory activity that is generated by intrinsic mechanisms either spontaneously (Steriade et al., 1996) or in response to non-temporally structured light stimuli (Gray & Singer, 1987, 1989; Eckhorn et al., 1988) closely resembles the flicker-induced oscillations. In both cases, clusters of units discharge synchronously, and these episodes of synchronous firing appear as bursts in MUA recordings and transient negativities in the LFP. For quantification of frequency responses we have relied more on LFP than MUA responses because continuous signals are more appropriate for spectral analysis than spike trains. We consider this legitimate because the two complementary signals gave very similar results. LFP signals differed from MUA activity only because they contained more prominent low frequency components. This is probably due to the fact that positive deflections of the LFP contribute to the spectra but are not associated with spike discharges. These positivities most likely reflect inhibitory events and passive loop closing currents, and are of large amplitudes at stimulus frequencies up to 10 Hz. We believe that this is the reason why the spectra of LFP responses had relatively more power at low frequencies than those of the MUA responses. Periodic stimulation of the retina resulted in regular oscillatory responses over the whole range of tested frequencies (from 2 to 50 Hz). After a transitory phase of µ 300 ms, which is approximately the duration of the response to a single flash, the responses to flicker stabilized and exhibited a very regular oscillatory pattern that was maintained throughout the whole stimulation period and ended abruptly with the last flash. No marked differences were observed between responses recorded from different sites within area 17, nor were there any major differences between the response patterns obtained from areas 17 and 18, except that in the latter the attenuation of responses with increasing flicker frequency was less pronounced than in the former. This agrees with the evidence that in cat LGN afferents to area 18 are exclusively of the transient or y-type, while those to area 17 are mixed, the sustained or x-type afferents constituting the majority (for review see Hoffmann & Stone, 1971; Stone & Dreher, 1973; Mitzdorf & Singer, 1978; Sherman & Guillery, 1996). As ganglion cells of the x-type follow high frequency flicker less readily than y-type cells, the © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 The response of cat visual cortex to flicker stimuli 1863 © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1864 G. Rager and W. Singer © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 The response of cat visual cortex to flicker stimuli 1865 FIG. 4. Distribution of power (z-axis) in the different frequency bands (x-axis) as a function of flicker frequency (y-axis) of MUA responses recorded from area 17. (B) Contour plot of the peaks shown in (A). Peak height is expressed by the diameter of symbols. (C) Distribution of the fundamental, first and second harmonic as a function of stimulus frequency (abscissa). (D) Ratios of the power of the first harmonic over the fundamental and of the second harmonic over the fundamental as a function of stimulus frequency. In the surface plot, response frequencies below 2 Hz were cut off to enhance visibility of fundamental and harmonic response components. enhanced frequency attenuation of responses in area 17 is readily explained by the frequency response of the retinal input. It is surprising, however, that the differences between the two areas were not more marked. One explanation could be that the LFP recordings, and presumably also the multi-unit recordings, overemphasized ymediated responses in A17. This possibility is suggested by previous FIG. 3. Cross-correlations between responses recorded from two different sites, both being located in area 17 (A,B), or one being located in A17 and the other in A18 (C,D). Correlograms computed for the same time window from 1000 to 2000 ms are shown in (A) and (C), and the corresponding shift predictors, computed from shifted, non-overlapping windows comprising steady state responses from 1000 to 2000 ms and 2000–3000 ms, respectively, are shown in (B) and (D). Note the similarity between real time correlograms and shift predictors. © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1866 G. Rager and W. Singer FIG. 5. Spectral analysis of MUA activity in area 18 after global stimulation. Same conventions as in Fig. 4. studies in which the contributions of x-and y-type inputs to responses in the visual system have been assessed with current source density analysis of LFPs (Mitzdorf & Singer, 1978; Mitzdorf, 1985). These studies indicated that the y-system contributes to a disproportionately large extent to LFPs because homogenous conduction velocities and low temporal scatter of responses lead to better synchronization of afferent volleys, and hence to better summation of synaptic currents. The over-representation of y-mediated responses in single cell recordings probably results from a sampling bias, because in the y-pathway cells and fibres tend to have larger diameters than in the x-pathway (Hoffmann et al., 1972; Stone, 1973). Moreover, as our analyses were based on auto- and cross-correlations, they overemphasize signals exhibiting a periodic temporal structure and hence responses with good phase locking to the stimulus. We propose that this has also contributed to an over-representation of y-mediated responses because these are expected to follow flicker stimuli with greater precision than x-mediated responses (Lu et al., 1995). Comparison of CCFs between MUA responses recorded from different electrodes revealed that the observed synchronization of unit discharges was essentially due to stimulus locking. The CCFs computed for temporally shifted response segments were indistinguishable from unshifted CCFs indicating that internal, neuronal interactions had not made a measurable contribution to the synchronization of the discharges. At first sight this is surprising, as powerful synchronizing mechanisms have been described in the retina (Mastronarde, 1989; Neuenschwander & Singer, 1996), the LGN (Steriade © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 The response of cat visual cortex to flicker stimuli 1867 FIG. 6. Comparison of MUA and LFP responses. Activity is recorded from area 17 at 2 Hz (A) and from area 18 at 6 Hz (B). The upper trace shows the PSTH, and the lower trace the averaged field potential together with the flash trigger pulse. Since the first trigger pulse starts the run, it is not visible on the plot. et al., 1991; Steriade et al., 1993) and the visual cortex (Eckhorn et al., 1988; Gray et al., 1989). Evidence indicates that these mechanisms are based on lateral interactions within the respective structures. In the mature retina the neuronal substrate for the interaction has not yet been identified, in the LGN the interactions are mediated mainly by inhibitory interneurons of the perigeniculate nucleus (Steriade et al., 1993), and in the visual cortex by tangential intracortical connections (Löwel & Singer, 1992; König et al., 1993). One possibility is that these internal synchronizing mechanisms contributed to the regularization of the steady state responses, thereby generating such perfect phase locking that original and shifted correlograms became similar. This interpretation is supported by the finding that it took several flash cycles before the responses got entrained into a regular oscillatory pattern. The frequency response of the retino-thalamo-cortical system Both MUA and LFP analysis revealed that the steady state responses to flicker consisted of several components. The largest response component reflected the frequency of the inducing flicker. The additional components corresponded to the first, second and sometimes even third harmonic frequency. The amplitudes of all components, fundamental and harmonics, changed with stimulation frequency, but these changes were not monotonous and differed for fundamental and harmonic response components. Certain frequencies were © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1868 G. Rager and W. Singer The response of cat visual cortex to flicker stimuli 1869 distinguished because they elicited particularly large fundamental or harmonic responses, or produced particularly large ratios between the amplitudes of harmonic and fundamental response components. Electrical activation of the MRF had a strong effect on these frequency preferences in that it markedly enhanced oscillatory response components in the γ-frequency band. As reviewed in the Introduction, neurons in the visual system have the tendency to engage in oscillatory activity covering a broad spectrum of frequencies whereby certain ranges are distinguished. This tendency of the visual system to engage in oscillatory activity at different frequencies suggests the possibility that there are neurons, or networks of neurons, which behave as oscillators that are tuned to the preferred ranges of frequencies. If so, periodic activation of the retino-thalamo-cortical system is expected to reveal resonance phenomena: for stimuli matching the frequency preference of the tuned oscillators, responses should become particularly large and their phase locking to the inducing stimuli should become particularly precise. The present data support this view, but they indicate that the respective oscillators are broadly tuned and strongly damped. Broad tuning is suggested by the finding that oscillatory responses were entrainable over a broad frequency range and that phase locking was good for nearly all frequencies. Strong damping of the oscillators is suggested by the fact that the oscillatory responses stopped abruptly with the last flash of the flicker. Two possibilities may be considered to account for the broad frequency tuning of the system and for the preference to engage in oscillatory responses in several distinct frequency bands. One is that there are actually strongly damped oscillators along the retino-cortical path which are tuned to different frequency bands and get recruited to variable extents at different stimulation frequencies. This conjecture is supported by evidence on diverse oscillatory mechanisms that are tuned to different frequencies. Retinal ganglion cells have the tendency to engage in highly synchronous oscillatory activity in the range of 60–90 Hz when activated by light stimuli (Neuenschwander & Singer, 1996). Multiple oscillatory mechanisms operating at frequencies ranging from 0.1 to more than 40 Hz have been identified at the level of the thalamus (Steriade et al., 1991; Amzica et al., 1992; Nunez et al., 1992; Steriade et al., 1993; Puil et al., 1994). Finally, evidence increases for the existence of oscillatory mechanisms at the cortical level which sustain rhythmic activity in the β- and γ-frequency range (Eckhorn et al., 1988; Gray & Singer, 1989; Steriade et al., 1996). Cortical cells of both the pyramidal and non-pyramidal type have been described that possess pacemaker mechanisms which predispose them to engage in oscillatory activity in the λ- and θ- (Gutfreund et al., 1995; Hutcheon et al., 1996), and β- and γ-range (Llinas et al., 1991; Gray & McCormick, 1996). In addition, it has been shown in simulation studies, that are supported by recordings from cortical slice preparations, that the network of coupled inhibitory interneurons can sustain by itself oscillatory activity in the 40 Hz range (Jefferys et al., 1996; Traub et al., 1996). Further support for a contribution of these oscillatory mechanisms to the frequency response of the system comes from the finding that MRF stimulation leads to a relative increase of responses in the high frequency range. It is well established that the thalamic oscillators which support low frequency oscillations (, 10–12 Hz) are gated by central core projection systems (for a review of early literature see Singer, 1977; Steriade & McCarley, 1990; McCormick & Bal, 1994). When activated, these modulatory systems block the pacemakers that support oscillations in the low frequency range (up to high α). This gating of thalamic oscillators is likely to be one of the reasons for the shift towards higher resonance frequencies when MRF was stimulated. Moreover, there is now evidence that MRF stimulation favours the occurrence of an oscillatory patterning in the γ-frequency range of responses to moving light stimuli (Munk et al., 1996). This indicates that central core activation predisposes cortical circuits to engage in high frequency oscillations. The enhanced resonance in the γ-frequency range after MRF stimulation can, thus, be accounted for by the contribution of oscillatory mechanisms that operate at different frequencies and are controlled differentially by central core afferents. The experimentally determined steady state LFP responses were compared with responses computed by linear superposition of single flash responses. This revealed that responses to flicker could be predicted rather well from responses to single flashes, except for the range of frequencies for which spectral analysis had suggested enhanced resonance. For the fundamental response component, the predictability of the frequency response was good (. 80%) except for a narrow range of frequencies between 9 and 13 Hz, and the range above 30 Hz where it dropped to 80 and 60%, respectively (K. Pawelzik, personal communication). In conclusion then, the retinothalamo-cortical system can be entrained to engage in highly regular oscillatory activity over a broad frequency range, but exhibits nonlinearities in two distinct frequency ranges that roughly coincide with the α-band, and the high β- and γ-band. We propose as the most likely reason for these non-linearities that oscillatory mechanisms tuned to the respective frequencies are driven in resonance. Global versus local stimuli The retina, thalamus, and in particular the cortex are characterized by connections which allow for lateral interactions between neurons encoding signals from spatially segregated points in the visual field. To assess the extent to which these lateral connections contribute to the frequency response of the system, responses to whole field stimuli were compared with those to stimuli confined to the excitatory receptive field. The main difference was that responses to the latter were less attenuated at high frequencies, while responses to the former were enhanced at frequencies below 8–10 Hz. This suggests that lateral interactions contribute to the stabilization and synchronization of oscillatory responses at low frequencies, while they reduce the ability of the system to synchronize at high frequencies. We propose that the improved resonance at low frequencies is due to the synchronizing action of lateral inhibitory connections which are recruited by whole field stimuli both at the thalamic and cortical level. These inhibitory mechanisms are known to contribute substantially to the stabilization and global synchronization of low frequency oscillations (up to 10 or 12 Hz), e.g. those which occur during slow- FIG. 7. Power spectra of LFP responses evoked in area 17 by global stimulation. Stimulus frequency increases in steps of 2 Hz from 2 Hz to 50 Hz. (A) Surface plot of spectra computed from steady state responses (500–1499 ms); response frequencies are cut at 100 Hz. Contour plot from the same data, conventions as in Fig. 4. Both plots clearly show the linear relationships between stimulus and response frequencies in the fundamental, first and second harmonic, and sometimes also in the third harmonic. (C) Distribution of power (ordinate) of the fundamental, and the first and second harmonics as a function of stimulus frequency (abscissa). (D) Distribution of the ratios between the power of first and second harmonics over the fundamental as a function of stimulus frequency. (E) Distribution of power (ordinate) of fundamental, first and second harmonic as function of response frequency (abscissa). © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1870 G. Rager and W. Singer FIG. 8. Power spectra of LFP responses evoked in area 18 by global stimulation. (Conventions as for Fig. 7.) The response of cat visual cortex to flicker stimuli 1871 FIG. 9. Spectral analysis of LFP responses in area 17 after global visual stimulation with simultaneous MRF activation. Surface (A) and contour plots (B) are shown together with the ratios of first and second harmonics over the fundamental (C). Same conventions as in Figs 7 and 8. wave sleep or states of drowsiness (for review see Steriade et al., 1990). Because of their long time constants, these interactions do not support high frequency oscillations. Thus, recruitment of these lateral interactions by whole-field stimuli could be one of the reasons for the enhanced frequency attenuation with large stimuli: although there is now in vitro evidence for the visual cortex that interacting GABAergic neurons can sustain oscillatory activity in the γ-range (Traub et al., 1996), the possibility should not be dismissed that lateral interactions, in addition to providing the substrate for the synchronization of responses, can also impede the entrainment of large populations of neurons into synchronous oscillations. Theoretical considerations and simulation studies have suggested that there ought to be a subset of tangential intracortical connections with a desynchronizing effect in order to prevent global synchronization of cortical activity in the γ-frequency range (König & Schillen, 1990; Schillen & König, 1994). © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1872 G. Rager and W. Singer FIG. 10. Spectral analysis of LFP responses in area 18 after global visual and simultaneous MRF stimulation. Surface (A) and contour plots (B) are shown together with the ratios of first and second harmonics over the fundamental (C). Same conventions as in Fig. 9. During states characterized by low frequency oscillations, large and spatially contiguous arrays of neurons tend to discharge in synchrony; hence the large amplitudes of low-frequency oscillations. This is not so for γ-oscillations. Here, synchronous firing seems to be confined to small and topographically dispersed clusters of neurons that share certain functional properties, and are usually interleaved with clusters of other neurons that either do not participate in any synchronized activity at all or are synchronized to other partners (Engel et al., 1991; Kreiter & Singer, 1996). Such topologically specific temporal patterning is only possible if there are mechanisms that prevent global entrainment. Precision of stimulus locking The comparison of power spectra computed from single sweeps with those from averaged responses indicated that phase locking of the fundamental response component was equally precise over the whole © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 The response of cat visual cortex to flicker stimuli 1873 FIG. 11. Spectral analysis of MUA (A,C,D) and LFP responses (B,E,F) from A17 evoked by flash stimuli confined to the receptive field. The contour plots in (C) and (E), and the ratio plots of first and second harmonics in (D) and (F) correspond to the surface plots (A) and (B), respectively. 1874 G. Rager and W. Singer The response of cat visual cortex to flicker stimuli 1875 frequency range tested. This agrees with the other evidence for good entrainability of the various oscillatory mechanisms. Only the harmonic response components which are more sensitive indicators of resonance properties revealed regions of reduced entrainability in the range of response frequencies between 12 and 30 Hz. This agrees roughly with the frequency-dependent amplitude variations in the averaged responses. Although the location of the troughs in these distributions varied, there was a consistent decline in response amplitude after the prominent peak in the α-frequency range. Relation to perception and implications for feature binding The result that at least a subpopulation of cortical neurons responds with rather small latency or phase jitter to flashes, and does so over a broad range of frequencies, agrees with the psychophysical evidence that surprisingly small differences in the timing of stimuli can be exploited for perceptual grouping. Stimuli that appear or disappear simultaneously tend to be perceptually bound, but temporal offsets as short as 8 ms are sufficient to support segregation of pattern elements into different figures (Ramachandran & Rogers-Ramachandran, 1991; Leonards et al., 1996; but see Kiper et al., 1996). Psychophysical data indicate that in humans the signals supporting such precise temporal judgements are conveyed by the non-colour-sensitive, magno-cellular pathway (Leonards & Singer, 1997). Although the magno-cellular system in primates cannot be directly equated with the y-system in the cat, both share the property to respond reliably and over a broad frequency range to stimuli containing temporal transients (Schiller & Logothetis, 1990; Lee, 1996). The present indication, derived from comparison between areas 17 and 18, that the precisely locked responses must have been mediated mainly by the y-system is then in general agreement with the psychophysical data. FIG. 13. Phase locking of the response to the stimulus after global visual stimulation in area 18 without (A) and with MRF stimulation (B). The percentage of phase locking is expressed as the ratio of the spectra of averaged responses (FFTsum) over the averaged spectra of single sweeps (FFTsingle) multiplied by 100. FIG. 12. Spectral analysis of MUA (A,C,D) and LFP responses (B,E,F) evoked by whole-field flashes at the same recording site as in Fig. 11. Conventions are the same as in Fig. 11. © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 1876 G. Rager and W. Singer The present results indicate further that synchronization of cortical responses due to stimulus locking occurred with a similar precision (in the range of milliseconds) as the internal, feature-specific synchronization of responses to moving stimuli that is not locked to the temporal structure of the stimuli. Since psychophysical evidence indicates that stimulus-locked synchronization is exploited as signature for the relatedness of stimuli, it is likely that the same also holds true for synchronization established by internal interactions. However, the halfwidth of the centre peak in the correlograms changed considerably with stimulation frequency. At low stimulation frequencies, the precision of synchronization was markedly lower than that achieved by internal synchronization, and became comparable only at frequencies in the β- and γ-range. One possibility is that timing information is carried by a special class of neurons that exhibit phasic responses of equal temporal precision at all stimulation frequencies, and that the sharpening of the responses at higher frequencies was due to the drop-out of cells with more sustained responses. The decrease in response amplitude at higher frequencies is compatible with this view. This, however, raises the more general question of how the responses are related to perception. Responses to the first flashes in a series differed from those to later flashes, and changing flicker frequency led to drastic changes in the amplitude and time course of responses. Still, subjectively, early and late flashes or flashes presented at different frequencies appear similar. This suggests the possibility that only a particular component of the response or only the responses of a particular class of neurons contribute to the perception of the flashes. The relevant response components should be those that do not change much throughout the flash sequence and show only little frequency dependence. According to our data, it would be the well-synchronized phasic response components that contribute to the centre peak in the cross-correlograms, as these are equally well expressed at all flicker frequencies. The tonic components that are pronounced at low frequencies and are less well stimulus locked, as indicated by the broad correlation peaks, cannot contribute substantially to flicker perception because they disappear at higher frequencies. This interpretation is compatible with recent psychophysical evidence that information about temporal and non-temporal features of stimuli is conveyed and evaluated by different systems: one that signals temporal transients with high accuracy producing synchronized responses to simultaneous events and asynchronous responses to temporally disjunct events; and another that is rather insensitive to temporal gradients of stimuli and generates sustained responses which reflect only poorly the temporal structure of stimuli. In humans, at least, the first system could be equated with the magno-cellular system and evidence indicates that it exploits the temporal structure of stimuli for perceptual grouping (Leonards et al., 1996), while the second system, which could be identified as the colour-sensitive parvocellular system, appears to operate more independently of external timing cues and supports perceptual grouping according to non-temporal features (Leonards & Singer, 1997). Because the second system synchronizes less well to stimuli, it can over-ride external timing information and bind or segregate stimulus features independently of their temporal properties, probably relying on internal synchronizing mechanisms. These, however, made no measurable contribution to the synchronicity of the flash-evoked responses investigated in this study, most likely because the uniform stimuli lacked groupable, non-temporal features. Acknowledgements We wish to thank Michael Stephan at the Max Planck Institute for his assistance in the development of evaluation programs, Patrick Faeh at the Institute of Anatomy at Fribourg whose expertise in data processing was of invaluable help in the computation of the figures and part of the evaluations, and Irmi Pipacs for editing the manuscript. Abbreviations ACF CCF CCG EEG FFT LFP MRF MUA PSTH RF auto-correlation function cross-correlation function electrocardiogram electroencephalogram Fast Fourier Transform local field potential mesencephalic reticular formation multi-unit activity peri-stimulus time histogram receptive field References Amzica, F., Nunez, A. & Steriade, M. (1992) Delta frequency (1–4 Hz) oscillations of perigeniculate thalamic neurons and their modulation by light. Neuroscience, 51, 285–294. Basar, E. & Bullock, T.H. (1992) Induced Rhythms in the Brain. Birkhäuser, Boston. Bressler, S.L. (1996) Interareal synchronization in the visual cortex. Behav. Brain Res., 76, 37–49. Bressler, S.L. & Nakamura, R. (1993) Inter-area synchronization in macaque neocortex during a visual pattern discrimination task. In Eeckman, F.H. & Bower, J.M. (eds), Computation and Neural Systems. Kluwer Academic, Boston., pp. 515–522. Contreras, D. & Steriade, M. (1997) State-dependent fluctuations of lowfrequency rhythms in corticothalamic networks. Neuroscience, 76, 25–38. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitboeck, H.J. (1988) Coherent oscillations: A mechanism for feature linking in the visual cortex? Biol. Cybern., 60, 121–130. Engel, A.K., König, P., Gray, C.M. & Singer, W. (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: Inter-columnar interactions as determined by cross-correlation analysis. Eur. J. Neurosci., 2, 588–606. Engel, A.K., König, P. & Singer, W. (1991) Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl. Acad. Sci. USA, 88, 9136–9140. Gerstein, G.L. & Perkel, D.H. (1972) Mutual temporal relationship among neuronal spike trains. Statistical techniques for display and analysis. Biophys. J., 12, 453–473. Gray, C.M., König, P., Engel, A.K. & Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337. Gray, C.M. & McCormick, D.A. (1996) Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science, 274, 109–113. Gray, C.M. & Singer, W. (1987) Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc. Neurosci. Abstr., 13, 404.0–404.3. Gray, C.M. & Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 86, 1698–1702. Gutfreund, Y., Yarom, Y. & Seger, J. (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J. Physiol. (Lond.), 483, 621–640. Hoffmann, K.P. & Stone, J. (1971) Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res., 32, 460–466. Hoffmann, K.P., Stone, J. & Sherman, S.M. (1972) Relay of receptive field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol., 35, 518–531. Hutcheon, B., Miura, R.M. & Puil, E. (1996) Subthreshold membrane resonance in neocortical neurons. J. Neurophysiol., 76, 683–697. Jefferys, J.G.R., Traub, R.D. & Whittington, M.A. (1996) Neuronal networks for induced ‘40Hz’ rhythms. Trends Neurosci., 19, 202–208. Kiper, D.C., Gegenfurtner, K.R. & Movshon, J.A. (1996) Cortical oscillatory responses do not affect visual segmentation. Vision Res., 36, 539–544. König, P., Engel, A.K., Löwel, S. & Singer, W. (1993) Squint affects synchronization of oscillatory responses in cat visual cortex. Eur. J. Neurosci., 5, 501–508. © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877 The response of cat visual cortex to flicker stimuli 1877 König, P. & Schillen, T.B. (1990) Segregation of oscillatory responses by conflicting stimuli—desynchronizing connections in neural oscillator layers. In Eckmiller, R., Hartman, G. & Hauske, G (eds), Parallel Processing in Neural Systems and Computers. Elsevier, Amsterdam, pp. 117–120. Kreiter, A.K. & Singer, W. (1996) Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J. Neuroscience, 16, 2381–2396. Lee, B.B. (1996) Minireview: receptive field structure in the primate retina. Vision Res., 36, 631–644. Leonards, U. & Singer, W. (1997) Selective temporal interactions between processing streams with differential sensitivity for colour and luminance contrast. Vision Res., 37, 1129–1140. Leonards, U., Singer, W. & Fahle, M. (1996) The influence of temporal phase differences on texture segmentation. Vision Res., 36, 2689–2697. Llinas, R.R., Grace, A.A. & Yarom, Y. (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc. Natl. Acad. Sci. USA, 88, 897–901. Löwel, S. & Singer, W. (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science, 255, 209–212. Lu, S.M., Guido, W., Vaughan, J.W. & Sherman, S.M. (1995) Latency variability of responses to visual stimuli in cells of the cat’s lateral geniculate nucleus. Exp. Brain Res., 105, 7–17. von der Malsburg, C. (1985) Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chem., 89, 703–710. Mastronarde, D.N. (1989) Correlated firing of retinal ganglion cells. Trends Neurosci., 12, 75–80. McCormick, D.A. & Bal, T. (1994) Sensory gating mechanisms of the thalamus. Curr. Opinion Neurobiol., 4, 550–556. Mitzdorf, U. (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev., 65, 37–100. Mitzdorf, U. & Singer, W. (1978) Prominent excitatory pathways in the cat visual cortex (A17 and A18): A current source density analysis of electrically evoked potentials. Exp. Brain Res., 33, 371–394. Munk, M.H.J., Roelfsema, P.R., König, P., Engel, A.K. & Singer, W. (1996) Role of reticular activation in the modulation of intracortical synchronization. Science, 272, 271–274. Murthy, V.N. & Fetz, E.E. (1996a) Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J. Neurophysiol., 76, 3949–3967. Murthy, V.N. & Fetz, E.E. (1996b) Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J. Neurophysiol., 76, 3968–3982. Neuenschwander, S. & Singer, W. (1996) Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379, 728–733. Nunez, A., Amzica, F. & Steriade, M. (1992) Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light induced fast (30–70 Hz) events. Neuroscience, 51, 269–284. Puil, E., Meiri, H. & Yarom, Y. (1994) Resonant behavior and frequency preferences of thalamic neurons. J. Neurophysiol., 71, 575–582. Ramachandran, V.S. & Rogers-Ramachandran, D.C. (1991) Phantom contours: A new class of visual patterns that selectively activates the magnocellular pathway in man. Bull. Psychonomic Soc., 29, 391–394. Regan, D. & Spekreijse, H. (1986) Evoked potentials in Vision Research 1961–86. Vision Res., 26, 1461–1480. Roelfsema, P.R., Engel, A.K., König, P. & Singer, W. (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature, 385, 157–161. Schillen, T.B. & König, P. (1994) Binding by temporal structure in multiple feature domains of an oscillatory neuronal network. Biol. Cybern., 70, 397–405. Schiller, P.H. & Logothetis, N.K. (1990) The color-opponent and broad-band channels of the primate visual system. TINS, 13, 392–398. Sherman, S.M. & Guillery, R.W. (1996) Functional organization of thalamocortical relay. J. Neurophysiol., 76, 1367–1395. Singer, W. (1977) Control of thalamic transmission by cortico-fugal and ascending reticular pathways in the visual system. Physiol. Rev., 57, 386–420. Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann. Rev. Physiol., 55, 349–374. Singer, W. & Gray, C.M. (1995) Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci., 18, 555–586. Steriade, M. & Amzica, F. (1996) Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc. Natl. Acad. Sci. USA, 93, 2533–2538. Steriade, M., Amzica, F. & Contreras, D. (1996) Synchronization of fast (30– 60 Hz) spontaneous cortical rhythms during brain activation. J. Neuroscience, 16, 392–417. Steriade, M., Curro-Dossi, R., Paré, D. & Oakson, G. (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc. Natl. Acad. Sci. USA, 88, 4396–4400. Steriade, M., Gloor, P., Llinás, R.R., Dasilva, F.H.L. & Mesulam, M.M. (1990) Basic mechanisms of cerebral rhythmic activities. Electroenceph. Clin. Neurophysiol., 76, 481–508. Steriade, M. & McCarley, R.W. (1990) Brainstem Control of Wakefulness and Sleep. Plenum Press, New York. Steriade, M., McCormick, A. & Sejnowski, T.J. (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science, 262, 679–685. Stone, J. (1973) Sampling properties of microelectrodes assessed in the cat’s retina. J. Neurophysiol., 36, 1071–1079. Stone, J. & Dreher, B. (1973) Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. Neurophysiol., 36, 551–567. Traub, R.D., Whittington, M.A., Stanford, I.M. & Jefferys, J.G.R. (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature, 383, 621–624. © 1998 European Neuroscience Association, European Journal of Neuroscience, 10, 1856–1877