* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ch 4: Cellular Metabolism
Nicotinamide adenine dinucleotide wikipedia , lookup
G protein–coupled receptor wikipedia , lookup
Lipid signaling wikipedia , lookup
Point mutation wikipedia , lookup
Light-dependent reactions wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Gene expression wikipedia , lookup
Paracrine signalling wikipedia , lookup
Multi-state modeling of biomolecules wikipedia , lookup
Amino acid synthesis wikipedia , lookup
Western blot wikipedia , lookup
Protein–protein interaction wikipedia , lookup
Epitranscriptome wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
Two-hybrid screening wikipedia , lookup
Signal transduction wikipedia , lookup
Phosphorylation wikipedia , lookup
Metalloprotein wikipedia , lookup
Adenosine triphosphate wikipedia , lookup
Basal metabolic rate wikipedia , lookup
Biochemical cascade wikipedia , lookup
Citric acid cycle wikipedia , lookup
Metabolic network modelling wikipedia , lookup
Biosynthesis wikipedia , lookup
Proteolysis wikipedia , lookup
Oxidative phosphorylation wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Ch 4: Energy and Cellular Metabolism Energy as it relates to Biology Chemical reactions Enzymes and how they speed rxs Metabolism and metabolic pathways Catabolism (ATP production) Anabolism (Synthesis of biologically important molecules) Energy in Biological Systems Review on your own! Chemical Reactions 1. Transfer energy A + B Substrates / reactants 2. C + D Products or use energy to do work Bioenergetics: Study of energy flow through biol. systems Reaction rate = speed of reaction Activation Energy Starts Reaction Fig 4-3 Reversible (most biol. rxs.) vs. irreversible reactions Endergonic vs. Exergonic Reactions Coupling endergonic Which kind? and exergoinic rxs Direct coupling vs. indirect coupling Enzymes are Proteins acting as Biological Catalysts 4 important characteristics of enzymes 1. chemical reaction rate by lowering activation energy 2. are not changed themselves 3. do not change nature of rx nor result 4. are specific Fig 4-8 Active Site: Small region of the complex 3D structure is active (or binding) site. Enzymes bind to substrate Old: Lock-and-key model / New: Induced-fit model Fig 2-16 Not in book Naming of Enzymes mostly suffix -ase first part gives info on function examples Kinase Phosphatase Peptidase Dehydrogenase Isozymes = different models of same enzyme (differ in 1 or few aa) Catalize same reaction under different conditions and in different tissues/organs Examples: 1. 2. Amylase LDH → importance in diagnostics Review Table 4-3 Enzyme Activity depends on 1. proteolytic activation (for some) 2. cofactors & coenzymes (for some) 3. temperature 4. pH 5. other molecules interacting with enzyme 1) Proteolytic Activation Also 1. Pepsinogen 2. Trypsinogen Pepsin Trypsin 2) Cofactors & Coenzymes structure: ___________ molecules (e.g. ?) function: conformational change of active site structure: Organic molecules (vitamin derivatives, FADH2 ....) function: act as receptors & carriers for atoms or functional groups that are removed from substrate 6) Molecules interacting with enzyme cont. Competitive inhibitors: reversible binding to active site block active site Fig 2-19 Also possible: irreversible binding via covalent bonds, e.g.: • Penicillin • Tamoxifen Reversible Reactions follow the Law of Mass Action Fig 4-9 Three Major Types of Enzymatic Reactions: 1. Oxydation - Reduction reactions (transfer of ?) 2. Hydrolysis - Dehydration reactions (breakdown & synthesis of ?) 3. Addition-Subtraction-Exchange reactions Metabolism Catabolism Anabolism Metabolism definition: ___________ Metabolic pathways = network of linked reactions Cells regulate metabolic pathways via 1. Control of enzyme concentration 2. Modulator production (allosteric modulators, feedback inhibition, Fig 4-11) 3. Different enzymes for reversible rxs, Fig 412) 4. Compartmentation of enzymes 5. ATP / ADP ratio Catabolic Pathways: ATP-Production Amount of ATP produced reflects on usefulness of metabolic pathways: Aerobic pathways Anaerobic pathways Different biomolecules enter pathway at different points Glycolysis From 1 glucose to 2 pyruvate molecules Main catabolic pathway of cytoplasm Does not require O2 part of _________ and ____________ catabolism Starts with phosphorylation (“Before doubling your money you first have to invest!”) Fig 4-13 Pyruvate has 2 Possible Fates Anaerobic catabolism: Pyruvate lactate Aerobic catabolism: Pyruvate Citric Acid Cycle Citric Acid Cycle Other names ? Takes place in ? Energy Produced: 1 ATP 3 NADH 1 FADH2 Fig. 4-16 Waste – 2 CO2 Final step: Electron Transport System Chemiosmotic theory / oxydative phosphorylation Transfers energy from NADH and FADH2 to ATP (via e- donation and H+ transport) Mechanism: Energy released by movement of e- trough transport system is stored temporarily in H+ gradient NADH produces a maximum of 2.5 ATP FADH2 produces a maximum of 1.5 ATP 1 ATP formed per 3H+ shuttled through ATP Synthase Fig 4-17 Cellular Respiration Maximum potential yield for aerobic glucose metabolism: 30-32 ATP synthesized from ADP H2O is a byproduct Synthetic Pathways Anabolic rxs synthesize large biomolecules Unit molecules Macromolecules nutrients & energy required Polysaccharides Lipids DNA Protein Glycogen Synthesis Made from glucose Stored in all cells but especially in Liver (keeps 4h glycogen reserve for between meals) Skeletal Muscle muscle contraction Gluconeogenesis Glycolysis in reverse From glycerol, aa and lactate All cells can make G-6-P, only liver and Kidney can make glucose Protein Synthesis Proteins are the key to cell function → necessary for all cell functions Protein synthesis is under nuclear direction DNA specifies Proteins ? DNA mRNA ? Protein How can only 4 bases in DNA encode > 20 different aa in protein? 1 letter word: 1 base = 1 aa how many possibilities? 2 letter word: 2 bases = 1 aa how many possibilities? 3 letter word: 3 bases = 1 aa how many possibilities? 3 letter words = base triplets or codons Redundancy of Genetic Code 1 start codon (AUG = Met) 3 stop codons 60 other codons for 19 aa Transcription DNA is transcribed into complementary mRNA by RNA Polymerase + nucleotides + Mg2+ ( = ?) +? Gene = elementary unit of inheritance Compare to Fig. 4-25 Translation mRNA is translated into string of aa (= polypeptide) 2 important components ?? mRNA + ribosomes + tRNA meet in cytoplasm Anticodon pairs with mRNA codon aa determined Amino acids are linked via ______________ bond. Fig 4-27 Post – Translational protein modifications: Folding, cleavage, additions glyco- , lipo- proteins Protein Sorting Due to signal/targeting sequence No targeting sequence protein stays in cytoplasm Targeting sequence protein destined for translocation into organelles or for export from cell For “export proteins”: Signal sequence leads growing polypeptide chain across ER membrane into ER lumen Modifications in ER Compare to Fig 4-28 Transition vesicles to Golgi apparatus for further modifications Transport vesicles to cell membrane DNA Replication Semiconservative DNA polymerase Running problem: Tay-Sachs Disease