Download E. CELL SPECIALIZATION: RNA and Protein Regulation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Eukaryotic transcription wikipedia , lookup

Expanded genetic code wikipedia , lookup

RNA polymerase II holoenzyme wikipedia , lookup

RNA interference wikipedia , lookup

Protein moonlighting wikipedia , lookup

RNA silencing wikipedia , lookup

QPNC-PAGE wikipedia , lookup

Alternative splicing wikipedia , lookup

Endomembrane system wikipedia , lookup

Cell-penetrating peptide wikipedia , lookup

History of molecular evolution wikipedia , lookup

Gene regulatory network wikipedia , lookup

Protein wikipedia , lookup

Molecular evolution wikipedia , lookup

Silencer (genetics) wikipedia , lookup

Nuclear magnetic resonance spectroscopy of proteins wikipedia , lookup

Biochemistry wikipedia , lookup

Protein adsorption wikipedia , lookup

Western blot wikipedia , lookup

Genetic code wikipedia , lookup

Intrinsically disordered proteins wikipedia , lookup

Protein–protein interaction wikipedia , lookup

Transcriptional regulation wikipedia , lookup

RNA-Seq wikipedia , lookup

SR protein wikipedia , lookup

Two-hybrid screening wikipedia , lookup

Polyadenylation wikipedia , lookup

Non-coding RNA wikipedia , lookup

Messenger RNA wikipedia , lookup

Gene expression wikipedia , lookup

List of types of proteins wikipedia , lookup

Epitranscriptome wikipedia , lookup

Transcript
___________________________________
E. CELL SPECIALIZATION: RNA and
Protein Regulation
1. nRNA to protein (review)
___________________________________
___________________________________
2. Cell-Specific Regulation of mRNA Production
3. Cell-Specific Regulation of Peptide and
Protein Production
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
1. nRNA to protein (review)
___________________________________
___________________________________
nucleus
___________________________________
cytosol
___________________________________
___________________________________
___________________________________
Fig. 17-5
The Genetic Code
•
20 amino acids
•
64 codons:
___________________________________
end of codon)
end of codon)
First mRNA base (5
Third mRNA base (3
Second mRNA base
•
61 = code for
amino acids
•
3 = stop signals
___________________________________
___________________________________
•
Genetic code is
redundant
(degenerate base)
•
No codon specifies
>1 unique amino
acid
___________________________________
•
Genetic code is
nearly universal (a
few exceptions)
___________________________________
•
Must be read in
frame (like words in
a book)
___________________________________
___________________________________
___________________________________
Fig. 17-13
Key Players in:
Amino
acids
Polypeptide
Ribosome
Translation
- mRNA
- tRNA
- ribosome
- amino acids
tRNA with
amino acid
attached
___________________________________
___________________________________
___________________________________
tRNA
___________________________________
Anticodon
Codons
5
3
___________________________________
mRNA
___________________________________
___________________________________
___________________________________
• Translation determines the primary structure
• Primary structure determines the repetitive folding of the
secondary structure
• Tertiary structure arises due to complex folding
• Quaternary structure arises due to the joining of multiple
peptide chains subunits
• The latter two are the result of post-translational changes
to the primary sequence
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Fig. 5-21a
___________________________________
Primary Structure
1
Primary
structure,
the sequence
of amino
acids in a
protein, is like
the order of
letters in a
long word
___________________________________
5
+H N
3
Amino end
Primary
structure is
determined
by inherited
genetic
information
10
Amino acid
subunits
15
___________________________________
___________________________________
20
___________________________________
25
___________________________________
___________________________________
Fig. 5-21c
___________________________________
The coils and folds ofSecondar
secondary
structure
Structure
result from hydrogen bonds between
repeating constituents of the polypeptide
backbone
___________________________________
___________________________________
β pleated sheet
___________________________________
___________________________________
α helix
___________________________________
___________________________________
Fig. 5-21f
Tertiary structure is determined by
interactions between R groups, rather than
interactions between backbone constituents
Hydrophobic interactions and
van der Waals interactions
Hydrogen
bond
Disulfide bridge
Polypeptide
backbone
Ionic bond
Strong covalent
bonds called
disulfide bridges
may reinforce the
protein’s structure
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Fig. 5-21g
3 polypeptides
___________________________________
β Chains
Quaternary structure
results when two or
more polypeptide
chains form one
macromolecule
___________________________________
___________________________________
α Chains
Collagen
Hemoglobin
- It is hard to predict a protein’s structure from its primary structure
___________________________________
___________________________________
- Most proteins go through several states on the way to stable structure
___________________________________
___________________________________
2. Cell-Specific Regulation of mRNA Production
___________________________________
___________________________________
a. Co/post-transcriptional RNA modification can
effect amount and type of protein expressed
1. 5’ Capping and 3’ Polyadenylation
determine how the nRNA will be handled
2. Splicing different mRNAs from the same
nRNA using different exons allows cells to
choose the protein they will make
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Formation of the 5’ Cap in mRNA
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-22a Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
The roles of the 5’ Cap
Allows the cell to distinguish mRNA from other RNA
___________________________________
___________________________________
Allows for processing and export of the mRNA
Allows for translation of the mRNA in the cytosol
___________________________________
___________________________________
___________________________________
___________________________________
Formation of the 3’ PolyA tail in mRNA
The position
of the tail is
coded in DNA
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-37 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
RNA Pol II reads the DNA and attaches:
- cleavage stimulation factor
- cleavage and polyadenylation specificity factor
___________________________________
RNA is cleaved and Poly-A polymerase added
___________________________________
- ~200 adenosine nucleotides are added
- CstF falls off
___________________________________
Poly-A Binding Proteins are added
- CPSF and Poly-A Pol fall off
- Poly-A binding proteins modify length of tail by
terminating or prolonging Poly-A Pol activity
___________________________________
___________________________________
Figure 6-38 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
Many proteins have alternative poly-A sites which can
either change the regulation of expression at the 3’UTR
or, less commonly, change the length of the coding region.
___________________________________
___________________________________
___________________________________
The choice of poly-A site
can be regulated by
external signals
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
The roles of the 3’ Poly-A Tail
Regulates termination of transcription
___________________________________
Regulates nuclear transport
Regulates the initiation of translation
___________________________________
Controls the total amount of translation
___________________________________
___________________________________
___________________________________
___________________________________
2. Splicing different mRNAs from the same nRNA
using different exons allows cells to choose the
protein they will make
– Alternative splicing occurs in ~92% of human genes
– “Splice sites” are formed from consensus sequences
found at the 5’ and 3’ ends of introns
___________________________________
___________________________________
___________________________________
– Different splicosome proteins made in different cells
recognize different consensus sequences
___________________________________
– The result is families of related proteins from the
same gene in different cell types
___________________________________
___________________________________
___________________________________
Fig. 17-10
•RNA splicing removes introns and joins exons,
creating an mRNA molecule with a continuous
coding sequence
5’ Exon Intron
Exon
Exon
Intron
___________________________________
3’
Pre-mRNA 5’ Cap
Poly-A tail
1
30
31
Coding
segment
mRNA 5’ Cap
1
5’ UTR
104
105
146
___________________________________
Introns cut out and
exons spliced together
Poly-A tail
___________________________________
146
3’ UTR
___________________________________
___________________________________
___________________________________
___________________________________
Examples of alternative RNA splicing (Part 1)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Examples of alternative RNA splicing (Part 2)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Alternative RNA splicing to form a family of rat αtropomyosin proteins
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
The Dscam gene of Drosophila can produce 38,016
different types of proteins by alternative splicing
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
The proteome in most eukaryotes dwarfs the genome in complexity!
___________________________________
___________________________________
Dscam protein is required to keep dendrites from the
same neuron from adhering to each other
___________________________________
___________________________________
___________________________________
Dscam complexity
is essential to the
establishment of the
neural net by excluding
self-synapses from
forming
___________________________________
___________________________________
___________________________________
___________________________________
Differential RNA Processing
Splicing Enhancers and Recognition Factors
___________________________________
___________________________________
- These work much like transcription enhancers and factors
- Enhancers are RNA sequences that bind factors to promote or silence
spliceosome activity at splice site
- Many of these sequences are cell type-specific, eg. muscle cells have
specific sequences around all of their splice sites, thus make musclespecific variants
___________________________________
___________________________________
- Trans-acting proteins recognize these sequences and recruit or block
spliceosome formation at the site
___________________________________
___________________________________
___________________________________
Muscle hypertrophy through mis-spliced myostatin
mRNA
___________________________________
___________________________________
___________________________________
Splice site
mutations
can be very
deleterious,
rarely can be
advantageous
___________________________________
___________________________________
___________________________________
___________________________________
Fig. 17-11-1
5
Spliceosomes
consist of a
variety of
proteins and
several small
nuclear
ribonucleoprote
ins (snRNPs)
that recognize
the splice sites
RNA transcript (pre-mRNA)
Exon 1
Intron
Protein
snRNA
___________________________________
Exon 2
Other
proteins
___________________________________
snRNPs
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Fig. 17-11-2
5
RNA transcript (pre-mRNA)
Exon 1
Protein
snRNA
Intron
___________________________________
Exon 2
Other
proteins
___________________________________
snRNPs
Spliceosome
___________________________________
5
___________________________________
___________________________________
___________________________________
___________________________________
Fig. 17-11-3
5
___________________________________
RNA transcript (pre-mRNA)
Exon 1
Intron
Protein
snRNA
Exon 2
___________________________________
Other
proteins
snRNPs
Spliceosome
___________________________________
5
___________________________________
___________________________________
Spliceosome
components
5
mRNA
Exon 1
Cut-out
intron
Exon 2
___________________________________
___________________________________
Differential RNA Processing
Spliceosome proteins link directly to the nuclear
pore to facilitate transfer of the spliced mRNA
into the cytosol
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Alternative splicing can have very
powerful effects on protein function
___________________________________
• Proteins often have a modular architecture
consisting of discrete regions called domains
___________________________________
• In many cases, different exons code for the
different domains in a protein
___________________________________
• Exon shuffling may result in the evolution of
new proteins
___________________________________
___________________________________
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings
___________________________________
Fig. 17-12
___________________________________
Gene
DNA
Exon 1 Intron Exon 2 Intron Exon 3
___________________________________
Transcription
RNA processing
___________________________________
Translation
Domain 3
___________________________________
___________________________________
Domain 2
Domain 1
___________________________________
Polypeptide
___________________________________
___________________________________
b. Selective Degradation of RNA
1. Prevention of export of incomplete or intronic
RNA from the nucleus
2. Prevention of translation of damaged or
unwanted RNA in the cytosol
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
2. Cytosolic selection
Cell type 1
___________________________________
Cell type 2
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
1. Prevention of export of incomplete or
intronic RNA from the nucleus
___________________________________
– More genes are transcribed in the nucleus than than
are allowed to be mRNA in the cytosol
___________________________________
– The unused nRNAs are degraded in the nucleus or
used to make non-coding RNA molecules
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
At every step in the processing of the transcript it must lose
and/or gain the appropriate proteins to be identified as ‘ready’.
___________________________________
___________________________________
___________________________________
‘export ready’
‘translation ready’
Figure 6-40 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
Key identifying proteins:
___________________________________
Positive for export
cap and PolyA binding proteins
exon junction and SR proteins
nuclear export receptor
___________________________________
Negative for export
snRNP
___________________________________
Positive for translation
translation initiation factors
___________________________________
Negative for translation
cap binding protein
___________________________________
The inappropriate combination of markers leads to
degradation by nuclear exosome and cytosolic exonuclease
___________________________________
___________________________________
___________________________________
2. Prevention of translation of damaged or
unwanted RNA in the cytosol
a. Failed recognition of 5’-cap and poly-A tail
prevents translation-initiation machinery
b. Eukaryotes have nonsense-mediated mRNA
decay system to eliminate defective mRNAs,
mainly due to nonsense codon
c. Bacteria also have quality control mechanisms to
deal with incompletely synthesized and broken
mRNAs
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Eukaryotic block to translation
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-80 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
Prokaryotic block to translation
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-81 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
3. Cell-Specific Regulation of Peptide and Protein
Production
a. Regulation of translation
b. Co-/Post-translational protein regulation
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
a. Regulation of translation
___________________________________
1. 5’ and 3’ untranslated regions of mRNAs
control their translation
___________________________________
2. Global regulation of translations by initiation
factor phosphorylation
___________________________________
3. Small noncoding RNA transcripts regulate
many animal and plant genes
___________________________________
4. RNA interference is a cell defense mechanism
___________________________________
___________________________________
___________________________________
1. 5’ and 3’ untranslated regions of mRNAs
control their translation
a. The primary site of translation initiation is the
5’-cap
b. Internal ribosome entry sites provide
alternative sites of translation initiation
c. Changes in mRNA stability can regulate the
amount of protein translated from mRNA
___________________________________
___________________________________
___________________________________
___________________________________
1. Cytoplasmic poly-A addition can regulate
translation
___________________________________
2. External factors can extend RNA life
___________________________________
___________________________________
___________________________________
___________________________________
a. The primary
site of translation
initiation is the
5’-cap
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-72 (part 1 of 5) Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-72 (part 2 of 5) Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
b. Internal ribosome entry sites provide
alternative sites of translation initiation
___________________________________
• Multiple AUG start codons in one mRNA
sequence
___________________________________
• A given cell can choose one or the other by it
the translation initiation factors it expresses
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7-108 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
Fig. 17-10
c. 5’ caps and 3’ poly-A tails dictate the duration
of time that the mRNA is active in the cytosol
5’ Exon Intron
Exon
Exon
Intron
3’
Pre-mRNA 5’ Cap
Poly-A tail
1
30
31
104
105
___________________________________
146
___________________________________
Coding
segment
mRNA 5’ Cap
1
5’ UTR
Poly-A tail
___________________________________
146
3’ UTR
___________________________________
___________________________________
___________________________________
c. 5’ caps and 3’ poly-A tails dictate the duration
of time that the mRNA is active in the cytosol
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-3 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
The length of the poly-A tail determines how long the mRNA survives
___________________________________
___________________________________
___________________________________
___________________________________
Once the tail is degraded: Coding sequence is destroyed
and/or
The 5’ cap is removed
___________________________________
___________________________________
Figure 7-110 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 7-109 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
2. External factors can extend RNA life
___________________________________
___________________________________
The length of translation can also
respond to external regulation from
hormones, growth factors, etc.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Degradation of casein mRNA in the presence and
absence of prolactin
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
b. Co-/Post-translational protein regulation
___________________________________
___________________________________
1. Folding and membrane insertion
2. Covalent modifications
3. Polymer assembly
4. Proteolytic modifications
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
1. Folding and membrane insertion
• Molecular chaperones help guide the
folding of most polypeptides while still
being synthesized
___________________________________
___________________________________
___________________________________
– Heat shock proteins (Hsp)
• Hsp70 (BIP)
___________________________________
• Hsp60 (chaperonins)
– Calnexin, calreticulin
___________________________________
– “Folding”, “Protease Inhibitor”
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 6-86 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
Fig. 5-24
___________________________________
Polypeptide
Correctly
folded
protein
Cap
___________________________________
___________________________________
Hollow
cylinder
Chaperonin
(fully assembled)
Steps of Chaperonin 2
Action:
1 An unfolded polypeptide enters the
cylinder from one end.
The cap attaches, causing the 3
cylinder to change shape in
such a way that it creates a
hydrophilic environment for
the folding of the polypeptide.
The cap comes
off, and the properly
folded protein is
released.
___________________________________
___________________________________
___________________________________
___________________________________
Many membrane proteins are associated
with the lipid bilayer during translation
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 12-43c Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 12-47 (part 2 of 2) Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure Q12-5 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
Misfolded proteins are controlled by regulated destruction
___________________________________
___________________________________
___________________________________
___________________________________
proteasome
Figure 6-90 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 12-54 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
2. Covalent Modifications
___________________________________
• Glycosylation by cell-specific enzymes can
change the function of a shared protein
___________________________________
• Different kinases in different cells may
phosphorylate proteins at alternative sites
___________________________________
• Isomerization of disulfide linkages in different
cells can produce different functions
___________________________________
• Variability in methylase/acetylase proteins can
dramatically alter cell phenotype and function
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 19-60b Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
3. Polymer Assembly
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Figure 3-27a Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
42 genes in humans for α-collagen
You need three to make a protein
___________________________________
___________________________________
40 different proteins have been shown
___________________________________
___________________________________
___________________________________
Figure 19-62 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________
___________________________________
___________________________________
4. Proteolytic Modifications
___________________________________
___________________________________
___________________________________
___________________________________
Figure 3-35 Molecular Biology of the Cell (© Garland Science 2008)
___________________________________