* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download What is Genetic Engineering?
Gene desert wikipedia , lookup
Genetically modified food wikipedia , lookup
Gene expression profiling wikipedia , lookup
Primary transcript wikipedia , lookup
Metagenomics wikipedia , lookup
Gene nomenclature wikipedia , lookup
Gel electrophoresis of nucleic acids wikipedia , lookup
Genealogical DNA test wikipedia , lookup
Zinc finger nuclease wikipedia , lookup
United Kingdom National DNA Database wikipedia , lookup
Epigenetics of diabetes Type 2 wikipedia , lookup
DNA damage theory of aging wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Cancer epigenetics wikipedia , lookup
Genome evolution wikipedia , lookup
Nucleic acid double helix wikipedia , lookup
Gene therapy wikipedia , lookup
Cell-free fetal DNA wikipedia , lookup
Genome (book) wikipedia , lookup
Non-coding DNA wikipedia , lookup
DNA supercoil wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Point mutation wikipedia , lookup
Epigenomics wikipedia , lookup
DNA vaccination wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Extrachromosomal DNA wikipedia , lookup
Cre-Lox recombination wikipedia , lookup
Genome editing wikipedia , lookup
No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup
Molecular cloning wikipedia , lookup
Genomic library wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Designer baby wikipedia , lookup
Helitron (biology) wikipedia , lookup
Genetic engineering wikipedia , lookup
Microevolution wikipedia , lookup
Genetic Engineering Biotechnology What is Genetic Engineering? The manipulation of a trait in an organism to create a desired change We have been manipulating DNA for generations! Artificial breeding creating new breeds of animals & new crop plants to improve our food Animal breeding Breeding food plants “Descendants” of the wild mustard the “Cabbage family” Breeding food plants Evolution of modern corn (right) from ancestral teosinte (left). A Brave New World The code is universal Since all living organisms… use the same DNA use the same code book read their genes the same way TACGCACATTTACGTACGCGGATGCCGCGACTATGATC ACATAGACATGCTGTCAGCTCTAGTAGACTAGCTGACT human genome CGACTAGCATGATCGATCAGCTACATGCTAGCACACYC GTACATCGATCCTGACATCGACCTGCTCGTACATGCTA 3.2 billion bases CTAGCTACTGACTCATGATCCAGATCACTGAAACCCTA GATCGGGTACCTATTACAGTACGATCATCCGATCAGAT CATGCTAGTACATCGATCGATACTGCTACTGATCTAGC TCAATCAAACTCTTTTTGCATCATGATACTAGACTAGC TGACTGATCATGACTCTGATCCCGTAGATCGGGTACCT ATTACAGTACGATCATCCGATCAGATCATGCTAGTACA TCGATCGATACTGCTACTGATCTAGCTCAATCAAACTC TTTTTGCATCATGATACTAGACTAGCTGACTGATCATG ACTCTGATCCCGTAGATCGGGTACCTATTACAGTACGA TCATCCGATCAGATCATGCTAGTACATCGATCGATACT Can we mix genes from one creature to another? YES! Green Fluorosceint Protein (GFP) How do we do mix genes? Genetic engineering find gene _______ DNA in both organisms _______ gene from one creature into other creature’s DNA _______ new chromosome into organism organism _______ new gene as if it were its own organism _______ gene as if it were its own _____________________________________: Remember: we all use the same genetic code! Uses of genetic engineering Genetically modified organisms (GMO) enabling plants to produce new proteins ___________________________: BT corn corn produces a bacterial toxin that kills corn borer (caterpillar pest of corn) ___________________________: fishberries strawberries with an anti-freezing gene from flounder ___________________________: golden rice rice producing vitamin A improves nutritional value Basic steps in genetic engineering 1. Isolate the gene 2. Insert it in a host using a vector 3. Produce as many copies of the host as possible 4. Separate and purify the product of the gene Gene Cloning Techniques 2.Extract/isolate DNA 1- Grow the target microorganism 4- Insert DNA fragments in a plasmid cloning vector Recombinant DNA target 3- Digest fragment DNA with restriction enzymes Continued 5Transform E. coli with library “Vibrio DNA library” Each bacteria will receive a single plasmid from the library Each bacteria will grow to form an individual colony Tools 1. 2. 3. 4. DNA you want to clone Restriction endonucleases (molecular scissors) Cloning vector (e.g. pGEM, pBR322…) Ligase enzyme (molecular glue) Step 1: Isolating the gene Step 1: Isolating the gene Cutting DNA DNA “scissors” ____________________________ ____________________________ used by bacteria to cut up DNA of attacking viruses EcoRI, HindIII, BamHI cut DNA at specific sites enzymes look for specific base sequences GTAACG|AATTCACGCTT GTAACGAATTCACGCTT CATTGCTTAA|GTGCGAA CATTGCTTAAGTGCGAA Restriction enzymes Cut DNA at specific sites ____________________________ restriction enzyme cut site GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA restriction enzyme cut site GTAACG AATTCACGCTT CATTGCTTAA GTGCGAA Sticky ends Cut other DNA with same enzymes leave “sticky ends” on both can glue DNA together at “sticky ends” GTAACG AATTCACGCTT CATTGCTTAA GTGCGAA gene you want GGACCTG AATTCCGGATA CCTGGACTTAA GGCCTAT chromosome want to add gene to GGACCTG AATTCACGCTT CCTGGACTTAA GTGCGAA combined DNA Restriction Endonucleases • Restriction endonucleases, a.k.a. “restriction enzymes” or “enzymes” by molecular biologists. • Type II restriction enzymes recognize and cut specific DNA sequences 5’-NNNAAGCTTNNN-3’ 3’-NNNTTCGAANNN-5’ Example • Hind III (Haemophilus influenza Rd) – Recognizes: AAGCTT – Cuts in between the two A’s AAGCTT TTCGAA A TTCGA AGCTT A Types of Sticky Ends 5’ overhangs (HindIII) 5’AAGCTT 3’ 5’A 3’TTCGAA 5’ 3’TTCGA 5’ 5’ AGCTT3’ A 5’ 3’ overhangs (KpnI) 5’ GGTACC 3’ 5’ GGTAC 3’ 3’ CCATGG 5’ 3’ C C 3’ 3’ CATGG 5’ Types of Overhangs Sticky ends Examples include HindIII & KpnI Blunt Ends Example SmaI Recognize CCCGGG Cut between C and G CCCGGG GGGCCC CCC GGG GGG CCC Sticky ends help glue genes together cut sites gene you want cut sites TTGTAACGAATTCTACGAATGGTTACATCGCCGAATTCACGCTT AACATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGTGCGAA AATTCTACGAATGGTTACATCGCCG GATGCTTACCAATGTAGCGGCTTAA sticky ends cut sites isolated gene chromosome want to add gene to AATGGTTACTTGTAACG AATTCTACGATCGCCGATTCAACGCTT TTACCAATGAACATTGCTTAA GATGCTAGCGGCTAAGTTGCGAA DNA ligase joins the strands sticky ends stick together ________________ DNA molecule chromosome with new gene added TAACGAATTCTACGAATGGTTACATCGCCGAATTCTACGATC CATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGATGCTAGC How can bacteria read human DNA? Why mix genes together? Gene produces protein in different organism or different individual human insulin gene in bacteria TAACGAATTCTACGAATGGTTACATCGCCGAATTCTACGATC CATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGATGCTAGC “new” protein from organism ex: human insulin from bacteria aa aa aa aa aa aa aa aa aa aa bacteria human insulin Step 2: Inserting gene into vector Vector – molecule of DNA which is used to carry a foreign gene into a host cell Plasmid Vector: pBR322 First modern cloning vector (1976) pBR322 • Contains: 1. colE1 origin of replication (ORI) pBR322 • Contains: Bacteria plus plasmid Non-transformed bacteria 2. Selectable Markers: • Ampicillin Resistance (β-lactamase gene) • and Tetracycline Resistance (tet gene) Nutrient media plus antibiotic Overnight growth Only colonies from bacteria that have plasmid pBR322 • Contains: 3. A few good restriction sites for inserting foreign DNA BamH1 BamH1 Your favorite DNA PstI Eco RI Bam HI Digest with BamH 1 and ligate PstI Eco RI Your favorite DNA Bam HI Bam HI pBR322 • Nice Features: √ √ √ 200 copies per E. coli cell Makes double stranded DNA All modern cloning vectors are based on pBR322 Next Generation: pUC Plasmids • Advantages over pBR322 1. 2. Makes 1000’s of copies/cell Small size at 2.7 kilobase pairs (kb) = easier uptake by E. coli Step 3: inserting vector into host Bacteria Bacteria are great! one-celled organisms reproduce by mitosis easy to grow, fast to grow generation every ~20 minutes A way to get genes into bacteria easily insert new gene into plasmid insert plasmid into bacteria bacteria now expresses new gene bacteria make new protein gene from other organism cut DNA plasmid recombinant plasmid + vector glue DNA transformed bacteria Blue/White Selection Bacteria plus empty plasmid Bacteria with plasmid plus insert Non-transformed bacteria Nutrient media plus antibiotic plus X-Gal Overnight Colonies with insert - white Colonies w/o insert - blue growth Only colonies from bacteria that have plasmid Grow bacteria…make more gene from other organism recombinant plasmid + vector plasmid grow bacteria harvest (purify) protein transformed bacteria Applications of biotechnology any Questions?