* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Timeline of Genetic Engineering
Transposable element wikipedia , lookup
Zinc finger nuclease wikipedia , lookup
Mitochondrial DNA wikipedia , lookup
Public health genomics wikipedia , lookup
Primary transcript wikipedia , lookup
Minimal genome wikipedia , lookup
United Kingdom National DNA Database wikipedia , lookup
Human genome wikipedia , lookup
Gene therapy wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Genealogical DNA test wikipedia , lookup
DNA damage theory of aging wikipedia , lookup
Cancer epigenetics wikipedia , lookup
Nucleic acid double helix wikipedia , lookup
No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup
Point mutation wikipedia , lookup
Genetically modified food wikipedia , lookup
Cell-free fetal DNA wikipedia , lookup
Genome evolution wikipedia , lookup
DNA supercoil wikipedia , lookup
Epigenomics wikipedia , lookup
Nutriepigenomics wikipedia , lookup
DNA vaccination wikipedia , lookup
Genomic library wikipedia , lookup
Gel electrophoresis of nucleic acids wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Genome (book) wikipedia , lookup
Non-coding DNA wikipedia , lookup
Molecular cloning wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Cre-Lox recombination wikipedia , lookup
Extrachromosomal DNA wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Genome editing wikipedia , lookup
Helitron (biology) wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Designer baby wikipedia , lookup
Microevolution wikipedia , lookup
GENETIC ENGINEERING Chapter 15 15.1 Selective Breeding Selective Breeding1. intentional breeding of organisms with desirable trait attempt to produce offspring with similar desirable characteristics or with improved traits. * before genetic engineering. It’s been around for a long time. Traits may be more milk produced, more meat, grows faster, more eggs, etc. Interesting Fact In the 1950’s, it took 84 days to grow a 5 pound chicken. Now it only takes 45 days. Speed Bump What is an example of selective breeding that we discussed earlier this semester? Super Cow before genetic ngineering 10,000 BC - Present Selective Breeding Only using select organisms from a group to create next generation Race horses Dogs Corn – altitude Cattle – meat or dairy Larger/Taller/Stronger Miniature horses Specific Types Hybridization Crossing dissimilar individuals to get an offspring with the best of both traits Examples Donkey + Horse = Mule (Horse’s Strength, Mule’s Endurance. Pomelo + sweet orange = Grapefruit. Inbreeding Continued breeding of individuals with similar traits. Less Diversity = Less Traits. Inbreeding let’s us keep traits we want in an oragnism. Example: Purebred Dogs Bacterial Mutations Cause organisms or organism’s offspring to mutate and hope they turn into something useful. Use radiation or mutagens to cause changes Not super effective with animals Super effective with bacteria (they grow faster) Mutate organisms and select the ones with the desired trait. Polyploid Plants Extra Chromosomes = trouble In people, animals. In plants, extra chromosomes work. (Somehow…?) Use drugs that prevent chromosome separation in meiosis. Select the offspring with the desired traits. What happens if we want something more precise then selective breeding? Something quicker? Something more specific? Genetic Engineering a laboratory technique used by scientists to change the DNA of living organisms 2. attempt to produce offspring with desirable characteristics 3. or with improved traits 1. Stronger corn stalk with larger ear of corn, with resistance to insects, etc. Selective Breeding vs. Genetic Engineering 1. 2. 3. It usually take generations upon generations to see a change occurring by selective breeding. It took several hundreds of years to produce the corn that we know today. Genetic Engineering make the changes a lot faster. 15.2 - RECOMBINANT DNA AND GENE ENGINEERING 1973 Stanley Cohen and Herbert Boyer First recombination First restriction enzyme – EcoR1 1. Named for bacteria isolated from – E.coli Took frog DNA and bacteria 2. Cut with restriction enzyme 3. Glued with DNA ligase 4. Placed into bacteria cell 5. Bacteria made frog proteins Before we begin… We talked about Putting Human Genes into bacteria – insulin Putting extra cow genes into cows – rBST What about something just totally crazy. Spider Goat http://www.youtube.com/watch?v=6egCh0KmjuA Spider Goat 1973 - Again Stanley Cohen and Herbert Boyer First recombination First restriction enzyme – EcoR1 1. Named for bacteria isolated from – E.coli Took frog DNA and bacteria 2. Cut with restriction enzyme 3. Glued with DNA ligase 4. Placed into bacteria cell 5. Bacteria made frog proteins Vocab Genetic engineering - manipulating genes Recombinant DNA-DNA made from two or more different organisms Gene Splicing Example: Human gene from a chromosome is transferred into bacteria. Insulin - protein hormone that controls sugar metabolism Before genetic engineering insulin was taken from the pancreases of slaughtered cows and pigs, then purified 1982 First genetically engineered drug Insulin Making Insulin Step1 in Recombinant DNA a. DNA (gene of interest) such as insulin code is cut out of a persons chromosome b. Restriction enzymes cut DNA between base pairs c. DNA from a plasmid (found in bacteria) is cut open using the same enzyme d. Cut between specific DNA sequence producing “sticky ends” Step 1 Recombinant DNA Step 2 Recombinant DNA a. The two are spliced together-enzyme ligase Human DNA Bacteria Plasmid DNA b. Recombinant DNA returned to bacteria cell Step 3 and 4 Step 3: Cloning Host cell reproduces / gene reproduces Step 4: Screening Good cells separated from bad Genetic Marker – an additional gene added to recombinant DNA to determine if making the Recombinant DNA was successful. Recombinant DNA Recombinant-DNA technology Makes it possible to change the genetic composition of living organisms. Example: Honeycrisp apples exceptionally crisp and juicy texture flesh is cream colored and coarse flavor is sub-acid and ranges from mild and wellbalanced to strongly aromatic outstanding flavor and texture can be maintained for at least six months in refrigerated storage without atmosphere modification Selective Breeding vs. Genetic Engineering 1. 2. 3. It usually take generations upon generations to see a change occurring by selective breeding. It took several hundreds of years to produce the corn that we know today. Genetic Engineering make the changes a lot faster. GEL ELECTROPHORESIS Gel Electrophoresis 1. 2. 3. 4. 5. DNA is cut into pieces with a restriction enzyme. The DNA is cleaned up, protein is removed DNA pieces are placed into a gel The gel is placed in an electrophoresis chamber The chamber is plugged in and the pieces of DNA separate according to size Gel Electrophoresis Negative electrode Positive electrode Gel-filled with cut DNA from different people Running the gel 1. 2. 3. 4. Plug in the apparatus Current moves through the buffer When the current moves so does the DNA Small pieces move fast then big pieces of DNAsmall pieces are farther away from the well. Running the gel Wells DNA Fingerprint DNA fingerprinting uses 1. 2. 3. 4. Identify people Identify body parts – war, accidents Identify suspects Identify organisms DNA Fingerprints Pattern of dark bands on film. 1. DNA is cut using restriction enzymes 2. Fragments are then placed in gel 3. Electric charge moves DNA -> + 4. Separate based on size DNA fingerprint 1985 DNA fingerprinting enters courtroom DNA fingerprinting is the ability to match DNA from crime scene with suspect DNA using gel electrophoresis Gel electrophoresis is when you 1. cut DNA with restriction enzyme 2. pull fragments through gel using charge 3. look at banding that results and match PCR Make a huge number of copies of a gene Southern Blot Southern blotting is designed to locate a particular sequence of DNA within a complex mixture. For example, Southern Blotting could be used to locate a particular gene within an entire genome. Southern Blot CLONING 1997 Ian Wilmut clones sheep – Dolly New-able to clone from ADULT cells Embryonic cells were already cloned Process 1. Remove a mammary gland cell 2. Remove an egg cell from another animal 3. Remove the nucleus from the egg cell 4. Fuse the mammary gland cell with the egg cell without a nucleus 5. Place the new fused cell into a surrogate mother Cloning Dolly USES OF GENETIC ENGINEERING Uses of Genetic Engineering Medicines: Pharmaceutical companies produce medically important proteins using bacteria. Diabetics Heart attack patients Factor VIII (blood clotting protein) Uses of Genetic Engineering Vaccines: Primarily used to prevent viral diseases such as, polio, smallpox, measles & influenza. Herpes II virus Hepatitis B GENETICALLY MODIFIED ORGANISMS (GMO’S) 15.3 AND A LITTLE BIT OF 15.4 1980 Supreme Court OK’s patents for genetically engineered organisms First patent – Exxon and oil-eating bacteria Estimated at least 70% of all processed foods contain GMO’s (truefoodsnow.org) Crops Enhanced taste and quality Reduced maturation time Increased nutrients, yields, and stress tolerance Improved resistance to disease, pests, and herbicides New products and growing techniques 1986 Tobacco plant genetically engineered 1992 Tomatoes that resist bruising engineered Not a GMO GM Products: Benefits and Controversies Animals Increased resistance, productivity, hardiness, and feed efficiency Better yields of meat, eggs, and milk Improved animal health and diagnostic methods Society Increased food security for growing populations GM Products: Benefits and Controversies Environment "Friendly" bioherbicides and bioinsecticides Conservation of soil, water, and energy Bioprocessing for forestry products Better natural waste management More efficient processing GM Products: Benefits and Controversies Controversies Safety Potential human health impact: allergens, transfer of antibiotic resistance markers, unknown effects Potential environmental impact: unintended transfer of transgenes through cross-pollination, unknown effects on other organisms (e.g., soil microbes), and loss of flora and fauna biodiversity Access and Intellectual Property Domination of world food production by a few companies Increasing dependence on Industralized nations by developing countries Biopiracy—foreign exploitation of natural resources GM Products: Benefits and Controversies Ethics Labeling Violation of natural organisms' intrinsic values Tampering with nature by mixing genes among species Objections to consuming animal genes in plants and vice versa Stress for animal Not mandatory in some countries (e.g., United States) Mixing GM crops with non-GM confounds labeling attempts Society New advances may be skewed to interests of rich countries 2003 Human Genome Project completed Genome – all of the genes mapped out for an organism Human Genome Project mapped out 25,000 – 35,000 genes Goals The Human Genome Project was a 13-year, international effort with the main goals of sequencing all 3 billion base pairs of human DNA and identifying all human genes. The Human Genome Project pinpointed genes and associated particular sequences in those genes with numerous diseases and disorders. It also identified about 3 million locations where single-base DNA differences occur in humans. What We Have Learned More than 40% of our proteins are similar to proteins in organisms such as fruit flies, worms, and yeast. This chart compares the human genome with other organisms. Gene Therapy 1. Process of changing a gene to treat a medical disease or disorder. 2. Absent or faulty gene is replaced by a normal, working gene. 3. This process allows the body to make the protein or enzyme it needs, which eliminates the cause of the disorder. Treating Disease — One Example of Gene Therapy To deliver therapeutic genes to target cells researchers engineer a virus that cannot reproduce or cause harm. Treating Disease — One Example of Gene Therapy The DNA containing the therapeutic gene is inserted into the modified virus. Treating Disease — One Example of Gene Therapy The patient’s cells are then infected with the genetically engineered virus. Treating Disease — One Example of Gene Therapy In theory the virus will insert the healthy gene into the target cell and correct the defect.