* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 10_Solla_Sara_10_CTP0608
Artificial neural network wikipedia , lookup
Multielectrode array wikipedia , lookup
Catastrophic interference wikipedia , lookup
Neural coding wikipedia , lookup
Neuroanatomy wikipedia , lookup
Feature detection (nervous system) wikipedia , lookup
Neural correlates of consciousness wikipedia , lookup
Development of the nervous system wikipedia , lookup
Premovement neuronal activity wikipedia , lookup
Synaptic gating wikipedia , lookup
Convolutional neural network wikipedia , lookup
Spike-and-wave wikipedia , lookup
Central pattern generator wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
Optogenetics wikipedia , lookup
Pre-Bötzinger complex wikipedia , lookup
Recurrent neural network wikipedia , lookup
Channelrhodopsin wikipedia , lookup
Neural oscillation wikipedia , lookup
Nervous system network models wikipedia , lookup
Fast and Slow Dynamics in Neural Networks with Small-World Connectivity Sara A. Solla Northwestern University With: Santiago Madruga, Hermann Riecke, Alex Roxin Roxin, Riecke, Solla - Phys. Rev.Lett. 92, 198101 (2004) Riecke, Roxin, Madruga, Solla - Chaos 17, 026110 (2007) Complex Networks: Form to Function To which extent does network topology determine or affect network function? Model of Network Connectivity: a Small-World Network Many complex networks have a smallworld topology characterized by dense local clustering or cliquishness of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connections. This is an attractive model for the organization of brain anatomical and functional networks because a smallworld topology can support both segregated (specialized) and distributed (integrated) information processing. Bassett, Bullmore - The Neuroscientist 12, 512 (2006) Small-World (SW) Brain Networks • Activity in hippocampal slices has been successfully modeled using SW networks of excitatory neurons that reproduce both bursts (CA3) and seizures (CA1) [Netoff, Clewley, Arno, Keck, White - J. Neurosci. 24, 8075 (2004)]. • Large-scale synchronization associated with epileptic seizures has been modeled using SW networks of Hindmarsh-Rose neurons [Percha, Szakpasu, Zochowski, Parent - Phys. Rev. E 72, 031909 (2005)]. • Small-world networks are increasingly being applied to the analysis of human functional networks derived from EEG, MEG, and fMRI experiments [Eguiluz, Chialvo, Cecchi, Baliki, Apkarian - Phys. Rev. Lett. 94, 018012 (2005)]. • The aggregate system of neurons and glial cells can be viewed as a small-world network of excitable cells [Sinha, Saramaki, Kaski - Rev. E 76, 015101 (2007)]. • A large-scale structural SW model of the dentate gyrus has been formulated and used to identify topological determinants of epileptogenesis [Dyhrfjeld-Johnsen, Santhakumar, Morgan, Huerta, Tsimring, Soltesz - J. Neurophysiol. 97, 1566 (2007)]. Dentate Gyrus: a Small-World Network Complex network topology: neither regular, nor random L : average path length C : clustering coefficient QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. The average number of synapses between any two neurons in the dentate gyrus is less than three - similar to the average path length for the nervous system of C. Elegans, which has only 302 neurons as opposed to over one million! [Dyhrfjeld-Johnsen, Santhakumar, Morgan, Huerta, Tsimring, Soltesz - J. Neurophysiol. 97, 1566 (2007)] Excitable Integrate-and-Fire Neurons Spikes are produced whenever: Followed by a reset: Excitable neurons if: < Network Activity: p = 0 QuickTime™ and a GIF decompressor are needed to see this picture. Network Activity: p = 0.05 QuickTime™ and a GIF decompressor are needed to see this picture. Sustained Network Activity p=0 p=0.05 Instantaneous Firing Rate, p = 0.10 Sustained Network Activity: Oscillations QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Network Activity: p = 0.15 QuickTime™ and a GIF decompressor are needed to see this picture. Sustained Network Activity p=0.05 p=0.15 Failure to Sustain Oscillations 100 0 Ensemble average over many network configurations with the same density p of shortcuts. Some of the configurations will sustain persistent oscillatory activity, while some will burst and fail. Is there a well defined transition for large networks? Failure to Sustain Oscillations Failure involves the interaction of two time scales: 1) A cellular time scale associated with the time TR needed for a neuron to recover to the point where a single synaptic input will make it fire: , where 2) A network time scale associated with the TN (p) for the first return of activity in a small-world network: [Newman, Moore, Watts - Phys. Rev. Lett. 84, 3201 (2000)] Transition to Failure The failure transition occurs at a size-dependent critical density of shortcuts, determined by the condition The critical density pcr scales with the logarithm of the size N of the system. Transition to Failure Sustained Oscillations: Backbone Pathway QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Backbone neurons shown in red; N=1000, p=0.10, and TR = 2.494. Sustained Oscillations: Attractors Oscillatory solutions characterized by their period, their mean firing rate, and the standard deviation of their firing rate. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. N=1000, p=0.05, D= 0.10 QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Number of attractors vs N Fast Waves: D= 0.10 QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. p = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, from (a) to (f) Slow Waves: D= 0.16 QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. p = 0.01, 0.20, 0.40, 1.00, from (a) to (d) Activity in (d) is noisy and exhibits synchronized population spikes Slow Waves: Increasing D D= 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18 Reentrant Network Activity: p = 0.8 D= 0.16 Reentrant Network Activity: p = 1.0 D= 0.16 Chaotic Neural Activity QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. N=1000, D= 0.16 Dashed vertical line indicates TR, the minimum value of the interspike interval (ISI) if neurons receive only one input per cycle. As p increases, an increasing number of neurons exhibit ISIs below TR. These ‘faster’ neurons receive multiple inputs via shortcuts, and they sustain network activity while the `slower’ neurons recover. Chaotic Neural Activity QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Temporal complexity of activity patterns in chaotic regime. N=1000, D= 0.18 Lifetime of chaotic activity: stretched exponentials. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. p=1, D= 0.18 and D= 0.165 Bistability: a switch-off mechanism Summary • Small-world networks of excitable neurons are capable of supporting sustained activity. This activity is sparse and oscillatory, and it does not require excitatory-inhibitory interactions. • A transition to failure occurs with increasing density of shortcuts. Below the failure transition, the number of attractors increases at least linearly with the size N of the system. A connectivity backbone can be associated with each attractor. • Above the transition, the network dynamics exhibit exceedingly long chaotic transients; failure times follow a stretched exponential distribution. Periods of low activity are mediated by `early firing’ neurons that receive more than one shortcut input. This chaotic activity does not require a balanced excitatory-inhibitory network. CONNECTIVITY MATTERS!!!