* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 709_2010_211_MOESM2_ESM - Springer Static Content Server
Polyclonal B cell response wikipedia , lookup
Ultrasensitivity wikipedia , lookup
Transcription factor wikipedia , lookup
Lipid signaling wikipedia , lookup
Clinical neurochemistry wikipedia , lookup
Promoter (genetics) wikipedia , lookup
RNA polymerase II holoenzyme wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Point mutation wikipedia , lookup
Secreted frizzled-related protein 1 wikipedia , lookup
Gene therapy of the human retina wikipedia , lookup
Expression vector wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Endogenous retrovirus wikipedia , lookup
Biochemical cascade wikipedia , lookup
Signal transduction wikipedia , lookup
Gene expression wikipedia , lookup
Two-hybrid screening wikipedia , lookup
Silencer (genetics) wikipedia , lookup
Transcriptional regulation wikipedia , lookup
Gene Summary Type AAO1 ARABIDOPSIS ALDEHYDE OXIDASE 1 aldehyde oxidase/ indole-3acetaldehyde oxidase Process: Auxin biosynthetic process (Seo et al. 1998). AGI: AT5G20960. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157 AAO3 ABSCISIC ALDEHYDE OXIDASE 3: Encodes the aldehyde oxidase delta isoform catalyzing the final step in abscisic acid biosynthesis. AGI: AT2G27150. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157 AAO4 ARABIDOPSIS ALDEHYDE OXIDASE 4: Encodes aldehyde oxidase AAO4 preferentially expressed in developing seeds. AGI: AT1G04580. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157 ACL5 ACAULIS 5: Encodes a spermine synthase. Required for internode elongation and vascular development, specifically in the mechanism that defines the boundaries between veins and nonvein regions. This mechanism may be mediated by polar auxin transport. Though ACL5 has been shown to function as a spermine synthase in E. coli, an ACL5 knockout has no effect on the endogenous levels of free and conjugated polyamines in Arabidopsis, suggesting that ACL5 may have a very specific or altogether different in vivo function. Process: Auxin polar transport, phloem or xylem histogenesis (Clay and Nelson 2005) and vessel member cell differentiation (Hanzawa et al. 1997). AGI: AT5G19530. Pop. Ort.: POPTRDRAFT_717791 - estExt_Genewise1_v1.C_LG_VI2502 abscisic aldehyde oxidase/ aldehyde oxidase/ indole-3acetaldehyde oxidase aldehyde oxidase/ aryl-aldehyde oxidase spermine synthase/ thermospermine synthase References (Seo et al. 1998) (Jensen et al. 2008) (Ibdah et al. 2009) (Clay and Nelson 2005; Imai et al. 2006; Muniz et al. 2008; Kakehi et al. 2008; Baucher et al. 2007) Gene Summary Type ACR4 ARABIDOPSIS CRINKLY4: Encodes a membrane localized protein with similarity to receptor kinases which is involved in epidermal cell differentiation. Flowers of mutants have disorganized ovule integument growth and abnormal sepal margins. In the roots, mutants initiate more lateral roots but fewer laterals actually emerge due to defects in lateral root formation. Mutants also display disorganized columella. The root phenotypes can be traced to abnormalities in asymmetric divisions in the pericycle and root apex. Conflicting data regarding the role of the kinase domain- which may or may not be required for function. Complementation studies indicate that the C-terminal domain is also not required for signalling function. May be regulated by protein turnover which is mediated by endocytic processes. kinase/ transmembrane receptor protein kinase References (De Smet et al. 2008; Tanaka et al. 2007) Process: Embryonic development ending in seed dormancy (Tanaka et al. 2002), lateral root formation, regulation of asymmetric cell division and root cap development (De Smet et al. 2008). AGI: AT3G59420. Pop. Ort.: POPTRDRAFT_562238 - eugene3.00070176 AG AGAMOUS: encoding a MADS domain transcription factor. Specifies floral meristem and carpel and stamen identity. Binds CArG box sequences. It is the only C function gene. It interacts genetically with the other homeotic genes to specify the floral organs. DNA binding / transcription factor (Bao et al. 2004; Zhao et al. 2007) Process: stamen and carpel development (Gomez-Mena et al. 2005), leaf development (Doyle and Amasino 2009) and maintenance of floral organ identity (Mizukami and Ma 1997) AGI: AT4G18960. Pop. Ort.: POPTRDRAFT_758707 (PTAG1) - fgenesh4_pg.C_LG_IV000335 AHK2 ARABIDOPSIS HISTIDINE KINASE 2: Important regulator of vascular tissue development in Arabidopsis thaliana shoots. Process: Regulation of shoot development (Riefler et al. 2006). AGI: AT5G35750. Pop. Ort.: POPTRDRAFT_775135 - fgenesh4_pg.C_LG_XIV001045 cytokinin receptor/ osmosensor/ protein histidine kinase (Hejatko et al. 2009; Riefler et al. 2006; Nishimura et al. 2004) Gene Summary Type AHK3 ARABIDOPSIS HISTIDINE KINASE 3: Important regulator of vascular tissue development in Arabidopsis thaliana shoots. Encodes a histidine kinases, a cytokinin receptor that controls cytokinin-mediated leaf longevity through a specific phosphorylation of the response regulator, ARR2. cytokinin receptor/ osmosensor/ protein histidine kinase Process: Regulation of shoot development (Riefler et al. 2006). AGI: AT1G27320. Pop. Ort.: POPTRDRAFT_554773 (PHK4) - eugene3.00031406 AHP6 ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6: AHP6 lacks the conserved histidine residue (Asn83 in AHP6b), which is required for phosphotransfer, present in the other AHPs. AHP6 does not appear to have phosphotransfer activity. Acts as an inhibitor of cytokinin signalling by interacting with the phosphorelay machinery. Expressed in developing protoxylem and associated pericycle cell files. Negative regulator of cytokinin signalling. Expression is down-regulated by cytokinins. There are two alternatively spliced genes for this locus, AHP6a and AHP6b, differing in the length of the first exon. In ahp6-2 seedlings, only the AHP6a transcript is present. Members of the AHP gene family include: AT3G21510 (AHP1), AT3G29350 (AHP2), AT5G39340 (AHP3), AT3G16360 (AHP4), AT1G03430 (AHP5) and AT1G80100 (AHP6). histidine phosphotransfer kinase/ transferase, transferring phosphoruscontaining groups References (Spichal et al. 2004; FrancoZorrilla et al. 2005; Hejatko et al. 2009; Riefler et al. 2006; Nishimura et al. 2004; Romanov et al. 2006) (Mähönen et al. 2006) Process: Cytokinin mediated signalling pathway, response to cytokinin stimulus and xylem development (Mähönen et al. 2006). AGI: AT1G80100. Pop. Ort.: POPTRDRAFT_815256 - estExt_fgenesh4_pg.C_LG_I1468 AMI1 AMIDASE 1: Encodes an enzyme with similarity to bacterial acylamidohydrolases and exhibits indole-3-acetamide amidohydrolase activity in vitro. This enzyme may be involved in the in vivo biosynthesis of indole-acetic acid from indole-3-acetamide, a native metabolite of A. thaliana. It appears to exist as a monomer. Process: Indoleacetic acid biosynthetic process (Pollmann et al. 2003). AGI: AT1G08980. Pop. Ort.: POPTRDRAFT_662772 (AMI1) - grail3.0016020901 amidase/ hydrolase, acting on carbonnitrogen (but not peptide) bonds / indoleacetamide hydrolase (Neu et al. 2007) Gene Summary Type ANAC012 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 12: NAM (no apical meristem) family member. Negatively regulates xylary fiber development. Encodes SND1, a NAC Domain transcription factor involved in secondary wall biosynthesis in fibers. Expressed specifically in interfascicular fibers and xylary fibers in stems. Expressed in the procambium of stem inflorescences and root. May act as a negative regulator of secondary wall thickening in xylary fibers. Acts redundantly with NST1 to control development of secondary walls in siliques. transcription factor Process: Lignin biosynthetic process (Mitsuda et al. 2007) and secondary cell wall biogenesis (Mitsuda et al. 2007; Zhong et al. 2006a). AGI: AT1G32770. Pop. Ort.: POPTRDRAFT_569285 (NAC068) - eugene3.00111299 ANAC101 ARABIDOPSIS NAC-DOMAIN PROTEIN 101: Encodes a NAC-domain transcription factor involved in xylem formation. Induces transdifferentiation of various cells into metaxylem vessel elements. Located in the nucleus. Expression induced in the presence of auxin, cytokinin and brassinosteroids. Process: Response to brassinosteroid stimulus, response to cytokinin stimulus and xylem development (Kubo et al. 2005). transcription activator/ transcription factor/ transcription regulator References (Ko et al. 2007; Mitsuda et al. 2007; Zhong et al. 2007a; Zhong et al. 2006b; Zhong et al. 2007b; Mitsuda and OhmeTakagi 2008; McCarthy et al. 2009) (Soyano et al. 2008; Baucher et al. 2007; Kubo et al. 2005) AGI: AT5G62380. Pop. Ort.: POPTRDRAFT_773505 (NAC037) - fgenesh4_pg.C_LG_XII001280 AO2 ALDEHYDE OXIDASE 2 aldehyde oxidase (Koiwai et al. 2000) AGI: AT3G43600. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157 APL ALTERED PHLOEM DEVELOPMENT: MYB family transcription factor member. Encodes gene product that is required for several aspects of phloem development in the root: a) the specific divisions organizing the phloem pole, b) sieve element differentiation and c) the expression of a companion-specific gene. Mutant has a defect in the organization of phloem poles in the root. apl seedlings have a short, determinate root with only occasional lateral branches. Process: Xylem and phloem development (Bonke et al. 2003). AGI: AT1G79430. Pop. Ort.: POPTRDRAFT_765696 - fgenesh4_pg.C_LG_VIII000710 transcription factor/ transcription regulator (Baucher et al. 2007) Gene Summary Type ARR15 RESPONSE REGULATOR 15: Encodes a nuclear response regulator that acts as a negative regulator in cytokininmediated signal transduction. Transcript accumulates in leaves and roots in response to cytokinin treatment. transcription regulator/ twocomponent response regulator Process: Cytokinin mediated signaling pathway (Hwang et al. 2002; Kiba et al. 2003) and response to cytokinin stimulus (D'Agostino et al. 2000; Kiba et al. 2002; Kim et al. 2006). References (Kiba et al. 2002; Kiba et al. 2003) AGI: AT1G74890. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454 ARR5 ARABIDOPSIS RESPONSE REGULATOR 5: Encodes a transcription repressor that mediates a negative feedback loop in cytokinin signaling. ARR5 expression is upregulated by Class I KNOX genes. Arr5 protein is stabilized by cytokinin in a two-component phosphorelay. Process: Cytokinin mediated signaling pathway (Hwang et al. 2002; To et al. 2007) and response to cytokinin stimulus (Brandstatter and Kieber 1998; D'Agostino et al. 2000; Kim et al. 2006). transcription regulator/ twocomponent response regulator (D'Agostino et al. 2000; Spichal et al. 2004) AGI: AT3G48100. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454 ARR6 RESPONSE REGULATOR 6: Encodes a Type-A response regulator that is responsive to cytokinin treatment. Its C-ter domain is very short in comparison to other Arabidopsis ARRs (17 total). Arr6 protein is stabilized by cytokinin. Process: Cytokinin mediated signaling pathway (Hwang et al. 2002; To et al. 2007) and response to cytokinin stimulus (Brandstatter and Kieber 1998; D'Agostino et al. 2000; Kim et al. 2006). transcription regulator/ twocomponent response regulator (Ren et al. 2009) AGI: AT5G62920. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454 ARR7 RESPONSE REGULATOR 7: Encodes a member of the Arabidopsis response regulator (ARR) family, most closely related to ARR15. A two-component response regulator protein containing a phosphate accepting domain in the receiver domain but lacking a DNA binding domain in the output domain. Involved in response to cytokinin and meristem stem cell maintenance. Arr7 protein is stabilized by cytokinin. Process: Cytokinin mediated signaling pathway (To et al. 2007; Hwang et al. 2002), response to cytokinin stimulus (Kim et al. 2006) and stem cell maintenance (Leibfried et al. 2005). AGI: AT1G19050. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454 transcription regulator/ twocomponent response regulator (Ren et al. 2009; Lee et al. 2008) Gene Summary Type ASA1 ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1: ASA1 encodes the alpha subunit of anthranilate synthase, which catalyzes the rate-limiting step of tryptophan synthesis. ASA1 is induced by ethylene, and forms a link between ethylene signaling and auxin synthesis in roots. anthranilate synthase References (Sun et al. 2009) Process: Auxin biosynthetic process (Stepanova et al. 2005). AGI: AT5G05730. Pop. Ort.: POPTRDRAFT_227100 (ASA1) - gw1.X.1797.1 ASB1 ANTHRANILATE SYNTHASE BETA SUBUNIT 1: Catalyzes the first step of tryptophan biosynthesis: Chorismate L-Glutamine = Anthranilate Pyruvate L-Glutamate. Functions as a heterocomplex with anthranilate synthase alpha subunit (ASA1 or ASA2). anthranilate synthase (Stepanova et al. 2005) Process: Auxin biosynthetic process (Stepanova et al. 2005). AGI: AT1G25220. Pop. Ort.: POPTRDRAFT_566399 (ASB1) - eugene3.00100957 ASB1-like A AGI: AT1G25155. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1 anthranilate synthase beta subunit, putative ASB1-like B AGI: AT1G24807. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1 anthranilate synthase beta subunit, putative ASB1-like C AGI: AT1G24909. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1 anthranilate synthase beta subunit, putative ASB1-like D AGI: AT1G25083. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1 anthranilate synthase beta subunit, putative ASB2 ANTHRANILATE SYNTHASE BETA SUBUNIT 2 anthranilate synthase beta subunit, putative AGI: AT5G57890. Pop. Ort.: POPTRDRAFT_566399 (ASB1) - eugene3.00100957 (Zhong et al. 1999) Gene Summary Type AT2G34590 AGI: AT2G34590. Pop. Ort.: POPTRDRAFT_668506 - grail3.0080008401 transketolase family protein AT3G25660 AGI: AT3G25660. Pop. Ort.: POPTRDRAFT_558478 - eugene3.00050093 glutamyltRNA(Gln) amidotransferase, putative ATE1_ALPHA Encodes the e1 alpha subunit of the pyruvate dehydrogenase complex (PDC) oxidoreductase, acting on the aldehyde or oxo group of donors, disulfide as acceptor / pyruvate dehydrogenase (acetyl-transferring) ATHB15/C NA/ICU4 CORONA: Member of the III HD-Zip family. Critical for vascular development and negatively regulates vascular cell differentiation. AGI: AT1G59900. Pop. Ort.: POPTRDRAFT_657555 - grail3.0009040502 DNA binding / transcription factor Process: Meristem initiation (Prigge et al. 2005), organ morphogenesis and regulation of meristem growth (Green et al. 2005) and phloem or xylem histogenesis (Kim et al. 2005). AGI: AT1G52150. Pop. Ort.: POPTRDRAFT_797557 (HB5) - fgenesh4_pm.C_LG_I000560 ATHB8 HOMEOBOX GENE 8: Member of the III HD-Zip family. Acting as a differentiation-promoting transcription factor of the vascular meristems. Process: Meristem initiation (Prigge et al. 2005), xylem development and positive regulation of cell differentiation and cell proliferation (Baima et al. 2001) and response to auxin stimulus (Baima et al. 1995; Mattsson et al. 2003). AGI: AT4G32880. Pop. Ort.: POPTRDRAFT_832118 (HB8) - estExt_fgenesh4_pm.C_LG_VI0713 DNA binding / transcription factor References (Hawker and Bowman 2004; Baucher et al. 2007; Kim et al. 2005; Ochando et al. 2008) (Hawker and Bowman 2004; Baucher et al. 2007) Gene Summary Type ATIPT1 ISOPENTENYLTRANSFERASE 1: Encodes a putative adenylate isopentenyltransferase which catalyzes the formation of isopentenyladenosine 5'-monophosphate (iPMP) from AMP and dimethylallylpyrophosphate (DMAPP). Involved in cytokinin biosynthesis. adenylate dimethylallyltransfe rase References (Kuderova et al. 2008) Process: Secondary growth: Increase in plant girth due to the activity of lateral meristems (vascular and cork cambium) (Matsumoto-Kitano et al. 2008). AGI: AT1G68460. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133 ATIPT14 AB061402 Arabidopsis thaliana AtIPT4 mRNA for cytokinin synthase. Process: Cytokinin biosynthetic process (Miyawaki et al. 2006; Kakimoto 2001). adenylate dimethylallyltransfe rase (Kakimoto 2001; Li et al. 2010) AGI: AT4G24650. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133 ATIPT6 AB061404 Arabidopsis thaliana AtIPT6 mRNA for cytokinin synthase, complete cds Process: Cytokinin biosynthetic process (Miyawaki et al. 2006). AGI: AT1G25410. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133 ATIPT8 ATP/ADP ISOPENTENYLTRANSFERASES: Encodes cytokinin synthase. Process: Cytokinin biosynthetic process (Miyawaki et al. 2006; Takei et al. 2001). ATP binding / adenylate dimethylallyltransfe rase/ tRNA isopentenyltransfera se ATP/ADP ISOPENTENYLTR ANSFERASES AGI: AT3G19160. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133 ATPAO2 POLYAMINE OXIDASE 2 AGI: AT2G43020. Pop. Ort.: POPTRDRAFT_831582 - estExt_fgenesh4_pm.C_LG_V0482 ATR1 ARABIDOPSIS P450 REDUCTASE 1: Encodes a cyp450 reductase likely to be involved in phenylpropanoid metabolism. AGI: AT4G24520. POPTRDRAFT_818445 (ATR1) - estExt_fgenesh4_pg.C_LG_V0696 (Miyawaki et al. 2006) (Miyawaki et al. 2006; Takei et al. 2001) amine oxidase/ electron carrier/ oxidoreductase NADPHhemoprotein reductase (Celenza et al. 2005; Bender and Fink 1998) Gene Summary Type ATR1-like AGI: AT3G02280. Pop. Ort.: POPTRDRAFT_714013 (ATR3) - estExt_Genewise1_v1.C_LG_IV3209 flavodoxin protein ATR2 ARABIDOPSIS P450 REDUCTASE 2: Encodes NADPH-cytochrome P450 reductase that catalyzes the first oxidative step of the phenylpropanoid general pathway. NADPHhemoprotein reductase AGI: AT4G30210. Pop. Ort.: POPTRDRAFT_825890 - estExt_fgenesh4_pg.C_LG_XVIII0790 AUX1 AUXIN RESISTANT 1: Encodes an auxin influx transporter. AUX1 resides at the apical plasma membrane of protophloem cells and at highly dynamic subpopulations of Golgi apparatus and endosomes in all cell types. AUX1 action in the lateral root cap and/or epidermal cells influences lateral root initiation and positioning. Process: Auxin polar transport (Kramer and Bennett 2006), establishment of planar polarity (Fischer et al. 2006) and positive gravitropism (Bennett et al. 1996). AGI: AT2G38120. Pop. Ort.: POPTRDRAFT_653103 (PtrAUX1) - grail3.0023028402 BAM1 BARELY ANY MERISTEM 1: Encodes a CLAVATA1-related receptor kinase-like protein required for both shoot and flower meristem function. Very similar to BAM2,with more than 85% a.a. identity. It has a broad expression pattern and is involved in vascular strand development in the leaf, control of leaf shape, size and symmetry, male gametophyte development and ovule specification and function. Anthers of double mutants (bam1bam2) appeared abnormal at a very early stage and lack the endothecium, middle, and tapetum layers. Further analyses revealed that cells interior to the epidermis (in anther tissue) acquire some characteristics of pollen mother cells (PMCs), suggesting defects in cell fate specification. The pollen mother-like cells degenerate before the completion of meiosis, suggesting that these cells are defective. In addition, the BAM1 expression pattern supports both an early role in promoting somatic cell fates and a subsequent function in the PMCs. Process: Regulation of meristem growth (DeYoung et al. 2006) and regulation of meristem structural organization (Deyoung and Clark 2008). AGI: AT5G65700. Pop. Ort.: POPTRDRAFT_717990 - estExt_Genewise1_v1.C_LG_VII0023 References family amino acid transmembrane transporter/ auxin binding / auxin influx transmembrane transporter/ transporter ATP binding / kinase/ protein serine/threonine kinase (Smolen et al. 2002) (KleineVehn et al. 2006; Belin et al. 2009; Carrier et al. 2008; De Smet et al. 2007) (Deyoung and Clark 2008; Hord et al. 2006) Gene Summary Type BAM2 BARELY ANY MERISTEM 2: Encodes a CLAVATA1-related receptor kinase-like protein required for both shoot and flower meristem function. Very similar to BAM1, with more than 85% a.a. identity. It has a broad expression pattern and is involved in vascular strand development in the leaf, control of leaf shape, size and symmetry, male gametophyte development and ovule specification and function. Anthers of double mutants (bam1bam2) appeared abnormal at a very early stage and lack the endothecium, middle, and tapetum layers. Further analyses revealed that cells interior to the epidermis (in anther tissue) acquire some characteristics of pollen mother cells (PMCs), suggesting defects in cell fate specification. The pollen mother-like cells degenerate before the completion of meiosis, suggesting that these cells are defective. In addition, the BAM2 expression pattern supports both an early role in promoting somatic cell fates and a subsequent function in the PMCs. ATP binding / protein binding / protein kinase/ protein serine/threonine References (Deyoung and Clark 2008; Hord et al. 2006) Process: Regulation of meristem growth (DeYoung et al. 2006) and regulation of meristem structural organization (Deyoung and Clark 2008). AGI: AT3G49670. Pop. Ort.: POPTRDRAFT_717990 - estExt_Genewise1_v1.C_LG_VII0023 BP/KNAT1 KNOTTED-LIKE FROM ARABIDOPSIS THALIANA: A member of class I knotted1-like homeobox gene family (together with KNAT2). Similar to the knotted1 (kn1) homeobox gene of maize. Normally expressed in the peripheral and rib zone of shoot apical meristem but not in the leaf primordia. It is also expressed in the fourth floral whorl, in the region that would become style, particularly in the cell surrounding the transmitting tissue. No expression was detected in the first three floral whorls. Expression is repressed by auxin and AS1 which results in the promotion of leaf fate. transcription factor (Baucher et al. 2007; Kanrar et al. 2006; Ragni et al. 2008) Process: Cell fate commitment (Venglat et al. 2002), cell fate specification (Lincoln et al. 1994) and xylem and phloem pattern formation (Douglas and Riggs 2005). AGI: AT4G08150. Pop. Ort.: POPTRDRAFT_710537 (KNOX) - estExt_Genewise1_v1.C_LG_II1820 BP/KNAT2 KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 2: A member of class I knotted1-like homeobox gene family (together with KNAT1). Similar to the knotted1 (kn1) homeobox gene of maize. KNAT2 acts synergistically with cytokinins and antagonistically with ethylene based on ectopic expression studies in different mutant backgrounds and hormone treatments. In addition, KNAT2 is negatively regulated by AS and YABBY genes. KNAT2 is strongly expressed in the shoot apex of seedlings, while in mature plants the gene is primarily expressed in flowers and inflorescence stems. Process: Cytokinin mediated signaling pathway (Hamant et al. 2002). AGI: AT1G70510. Pop. Ort.: POPTRDRAFT_658310 - grail3.0036024801 transcription factor (Ikezaki et al. 2010; Ragni et al. 2008) Gene Summary Type BP/KNAT6 Homeodomain transcription factor KNAT6, belonging to class I of KN transcription factor family (which also includes KNAT1 and KNAT2). Expression is increased in as and bop1 leaf mutants. DNA binding / transcription activator/ transcription factor Process: Contributes to SAM maintenance and boundary establishment in the embryo via the SHOOT MERISTEMLESS(STM)/CUP-SHAPED COTYLEDON (CUC) pathway (Belles-Boix et al. 2006). References (Ragni et al. 2008; BellesBoix et al. 2006) AGI: AT1G23380. Pop. Ort.: POPTRDRAFT_658310 - grail3.0036024801 BRL1 BRI 1 LIKE: mutant has Altered vascular cell differentiation; LRR Receptor Kinase kinase (Baucher et al. 2007) AGI: AT1G55610. Pop. Ort.: POPTRDRAFT_844734 - e_gw1.I.6306.1 BRL2 BRI1-LIKE 2: Encodes a leucine rich repeat receptor kinase and associated with provascular/procambial cells. Similar to BRI, brassinosteroid receptor protein. Process: Auxin mediated signaling pathway and brassinosteroid mediated signaling pathway (Ceserani et al. 2009), phloem transport and xylem and phloem pattern formation (Clay and Nelson 2002). AGI: AT2G01950. Pop. Ort.: POPTRDRAFT_657034 - grail3.0010068301 BRL3 BRI1-LIKE 3: Similar to BRI, brassinosteroid receptor protein. AGI: AT3G13380. Pop. Ort.: POPTRDRAFT_672125 - grail3.0140000501 CKI1 CYTOKININ-INDEPENDENT 1: Important regulators of vascular tissue development in Arabidopsis thaliana shoots. Encodes a putative plasma membrane-bound hybrid histidine kinase and cytokinin sensor that is expressed within the female gametophyte. Process: Cytokinin mediated signaling pathway (Hwang et al. 2002). AGI: AT2G47430. Pop. Ort.: POPTRDRAFT_898811 - e_gw1.XIV.2340.1 ATP binding / protein serine/threonine kinase/ transmembrane receptor protein serine/threonine kinase ATP binding / protein binding / protein kinase/ protein serine/threonine kinase protein histidine kinase/ twocomponent response regulator (Baucher et al. 2007; Ceserani et al. 2009) (CanoDelgado al. 2004) et (Glover et al. 2008; Hejatko et al. 2009) Gene Summary Type CLE40 CLAVATA3/ESR-RELATED 40: Member of a large family of putative ligands homologous to the Clavata3 gene. Consists of a single exon. protein binding / receptor binding References (Fiers et al. 2005) AGI: AT5G12990. Pop. Ort.: POPTRDRAFT_750766 - fgenesh4_pg.C_LG_I000369 CLE41 CLAVATA3/ESR-RELATED 41: Belongs to a large gene family, called CLE for CLAVATA3/ESR-related, encoding small peptides with conserved carboxyl termini. The C-terminal 12 amino acid sequence of CLE41 is identical to that of a dodeca peptide (TDIF, tracheary element differentiation inhibitory factor) isolated from Arabidopsis and functions as a suppressor of plant stem cell differentiation. TDIF sequence is also identical to the C-terminal 12 amino acids of CLE44 (AT4G13195). TDIF/CLE41/44/42 was shown to act as ligand for PXY. protein binding / receptor binding (Hirakawa et al. 2008; Lehesranta et al. 2009) Process: Phloem or xylem histogenesis (Ito et al. 2006). AGI: AT3G24770. Pop. Ort.: POPTRDRAFT_569594 - eugene3.00120247 CLE42 (Ito et al. 2006) CLAVATA3/ESR-RELATED 42: Belongs to a large gene family, called CLE for CLAVATA3/ESR-related, encoding small peptides with conserved carboxyl termini. AGI: AT2G34925. Pop. Ort.: POPTRDRAFT_751056 - fgenesh4_pg.C_LG_I000659 CLE44 (Hirakawa et al. 2008; Lehesranta et al. 2009) CLAVATA3/ESR-RELATED 44: Belongs to a large gene family, called CLE for CLAVATA3/ESR-related, encoding small peptides with conserved carboxyl termini. The C-terminal 12 amino acid sequence of CLE44 is identical to that of a dodeca peptide (TDIF, tracheary element differentiation inhibitory factor) isolated from Arabidopsis and functions as a suppressor of plant stem cell differentiation. TDIF sequence is also identical to the C-terminal 12 amino acids of CLE41 (AT3G24770). TDIF/CLE41/44/42 was shown to act as ligand for PXY. Process: Phloem or xylem histogenesis (Ito et al. 2006). AGI: AT4G13195. Pop. Ort.: POPTRDRAFT_569594 - eugene3.00120247 CLE6 CLAVATA3/ESR-RELATED 6: Member of a large family of putative ligands homologous to the Clavata3 gene. Consists of a single exon. Can replace CLV3 function in vivo. AGI: AT2G31085. Pop. Ort.: POPTRDRAFT_574352 - eugene3.00190826 protein binding / receptor binding (Cock and McCormick 2001) Gene Summary Type CLV1 CLAVATA 1: Putative receptor kinase with an extracellular leucine-rich domain. Controls shoot and floral meristem size, and contributes to establish and maintain floral meristem identity. Negatively regulated by KAPP (kinaseassociated protein phosphatase) (Williams et al. 1997; Trotochaud et al. 1999). CLV3 peptide binds directly CLV1 ectodomain. ATP binding / kinase/ protein serine/threonine kinase/ receptor signaling protein serine/threonine kinase Process: Cell differentiation (Williams et al. 1999) and regulation of meristem structural organization (Clark et al. 1997). References (Ogawa et al. 2008) AGI: AT1G75820. Pop. Ort.: POPTRDRAFT_583546 - eugene3.15140001 CLV2 CLAVATA2: Receptor-like protein containing leucine-rich repeats. Regulates both meristem and organ development in Arabidopsis. Process: Anatomical structure morphogenesis, regulation of flower development and growth (Kayes and Clark 1998) and meristem development (Wang et al. 2008). protein binding / receptor signaling protein (Wang et al. 2010) AGI: AT1G65380. Pop. Ort.: POPTRDRAFT_596988 - eugene3.00870064 CLV3 CLAVATA3: One of the three CLAVATA genes controlling the size of the shoot apical meristem (SAM) in Arabidopsis. Belongs to a large gene family called CLE for CLAVATA3/ESR-related. Encodes a stem cell-specific protein CLV3 presumed to be a precursor of a secreted peptide hormone. The deduced ORF encodes a 96-amino acid protein with an 18-amino acid N-terminal signal peptide. The functional form of CLV3 (MCLV3) is a posttranscriptionally modified 12-amino acid peptide, in which two of the three prolines were modified to hydroxyproline. CLV3 binds the ectodomain of the CLAVATA1 (CLV1) receptor-kinase. Regulates shoot and floral meristem development. Required for CLAVATA1 receptor-like kinase assembly into a signaling complex that includes KAPP and a Rho-related protein. It restricts its own domain of expression, the central zone (CZ) of the shoot apical meristem (SAM), by preventing differentiation of peripheral zone cells, which surround the CZ, into CZ cells and restricts overall SAM size by a separate, long-range effect on cell division rate. CLE domain of CLV3 is sufficient for function. Process: Cell differentiation (Brand et al. 2000), meristem development (Muller et al. 2006) and regulation of meristem structural organization (Kondo et al. 2006). AGI: AT2G27250. Pop. Ort.: POPTRDRAFT_821595 - estExt_fgenesh4_pg.C_LG_IX1351 kinase activator/ protein binding / receptor binding (Ogawa et al. 2008; Fiers et al. 2005; Reddy and Meyerowitz 2005; Muller et al. 2006; Kondo et al. 2006) Gene Summary Type References COV1 CONTINUOUS VASCULAR RING: Encodes an integral membrane protein of unknown function, highly conserved between plants and bacteria; is likely to be involved in a mechanism that negatively regulates the differentiation of vascular tissue in the stem. Mutants display a dramatic increase in vascular tissue development in the stem in place of the interfascicular region that normally separates the vascular bundles. membrane protein (Baucher et al. 2007) Process: Stem vascular tissue pattern formation and auxin mediated signaling pathway (Parker et al. 2003). AGI: AT2G20120. Pop. Ort.: POPTRDRAFT_669317 - grail3.0020005701 CYP79B2 CYTOCHROME P450 79B2: Belongs to cytochrome P450 and is involved in tryptophan metabolism. Converts Trp to indo-3-acetaldoxime (IAOx), a precursor to IAA and indole glucosinolates. Process: Indoleacetic acid biosynthetic process (Ljung et al. 2005; Zhao et al. 2002). AGI: AT4G39950. Pop. Ort.: POPTRDRAFT_555694 (CYP79D8) - eugene3.00040407 CYP79B3 CYTOCHROME P450 79B3: Encodes a cytochrome P450. Involved in tryptophan metabolism. Converts Trp to indole-3-acetaldoxime (IAOx), a precursor to IAA and indole glucosinolates. Process: Indoleacetic acid biosynthetic process (Ljung et al. 2005; Zhao et al. 2002). AGI: AT2G22330. Pop. Ort.: POPTRDRAFT_584081 (CYP79D6v2) - eugene3.15850001 CYP83A1 CYTOCHROME P450 83A1: Encodes a cytochrome p450 enzyme that catalyzes the initial conversion of aldoximes to thiohydroximates in the synthesis of glucosinolates not derived from tryptophan. Also has a role in auxin homeostasis. AGI: AT4G13770. Pop. Ort.: POPTRDRAFT_346721 (CYP83F1) - fgenesh1_pg.C_LG_II000227 electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding oxidoreductase, acting on paired donors, with incorporation or reduction of molecular oxygen, NADH or NADPH as one donor, and incorporation of one atom of oxygen / oxygen binding (Mikkelsen et al. 2009) (Mikkelsen et al. 2009) (Naur et al. 2003; Bak and Feyereisen 2001) Gene Summary Type CYP83B1 SUR2 CYTOCHROME P450 MONOOXYGENASE 83B1: Encodes an oxime-metabolizing enzyme in the biosynthetic pathway of glucosinolates. Is required for phytochrome signal transduction in red light. Mutation confers auxin overproduction. oxidoreductase, acting on paired donors, with incorporation or reduction of molecular oxygen, NADH or NADPH as one donor, and incorporation of one atom of oxygen / oxygen binding AGI: AT4G31500. Pop. Ort.: POPTRDRAFT_346721 (CYP83F1) - fgenesh1_pg.C_LG_II000227 Dof5.6/HC A2 Preferentially expressed in the vasculature of all the organs, particularly in the cambium, phloem, and interfascicular parenchyma cells of inflorescence stems. Process: Phloem or xylem histogenesis and procambium histogenesis (Guo et al. 2009). Dof-type zinc finger domaincontaining protein References (Naur et al. 2003; Bak and Feyereisen 2001) (Guo et al. 2009) AGI: AT5G62940. Pop. Ort.: POPTRDRAFT_570095 - eugene3.00120748 ELF5A-1 EUKARYOTIC ELONGATION FACTOR 5A-1: Xylem abundance. In mammalian cells it functions as a shuttle protein that translocates mRNA from the nucleus to cytoplasmic ribosomes. Overexpression results in an increase in both primary and secondary xylem formation. In RNAi suppressed lines, xylem formation is reduced. translation initiation factor Process: Xylem development (Liu et al. 2008). AGI: AT1G13950. Pop. Ort.: POPTRDRAFT_717121 - estExt_Genewise1_v1.C_LG_VI0968 F11A3.11 AGI: AT2G20340. Pop. Ort.: POPTRDRAFT_816969 - estExt_fgenesh4_pg.C_LG_II2533 tyrosine decarboxylase, putative F17M19.7 AGI: AT1G71920. Pop. Ort.: POPTRDRAFT_287731 - gw1.41.216.1 histidinolphosphate aminotransferase, putative (Liu et al. 2008) Gene Summary Type F23N19.18 AGI: AT1G62810. Pop. Ort.: POPTRDRAFT_744008 - estExt_Genewise1_v1.C_1270098 copper amine oxidase, putative F4I10.4 AGI: AT4G33070. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442 pyruvate decarboxylase, putative GH3.6/DFL 1 DWARF IN LIGHT 1: Encodes an IAA-amido synthase that conjugates Ala, Asp, Phe, and Trp to auxin. Lines overexpressing this gene accumulate IAA-ASP and are hypersensitive to several auxins. Identified as a dominant mutation that displays shorter hypocotyls in light grown plants when compared to wild type siblings. Protein is similar to auxin inducible gene from pea (GH3). indole-3-acetic acid amido synthetase References (Nakazawa et al. 2001) Process: Auxin homeostasis and response to auxin stimulus (Staswick et al. 2005) and auxin mediated signaling pathway (Nakazawa et al. 2001). AGI: AT5G54510. Pop. Ort.: POPTRDRAFT_571444 (GH3-6) - eugene3.00130808 GN GNOM: Encodes a GDP/GTP exchange factor for small G-proteins of the ADP ribosylation factor (RAF) class, and as regulator of intracellular trafficking. Homologous to Sec7p and YEC2 from yeast. Involved in the specification of apical-basal pattern formation. Essential for cell division, expansion and adhesion. It appears that heteotypic binding between the DCB and C-terminal domains of two GNOM proteins is required for membrane association, however, GNOM appears to exist predominantly as a heterodimer formed through DCB-DCB interactions. GTP:GDP antiporter/ protein homodimerization (Helariutta and Bhalerao 2003) Process: Basipetal auxin transport (Kleine-Vehn et al. 2008), cytokinesis by cell plate formation (Shevell et al. 1994), establishment of planar polarity (Fischer et al. 2006) and phloem or xylem histogenesis (Koizumi et al. 2000). AGI: AT1G13980. Pop. Ort.: POPTRDRAFT_578433 - eugene3.00180657 HPA1 HISTIDINOL PHOSPHATE AMINOTRANSFERASE 1: Encodes histidinol-phosphate aminotransferase that catalyzes the eighth step in histidine biosynthesis. Loss of function mutations are embryo lethal. AGI: AT5G10330. Pop. Ort.: POPTRDRAFT_287731 - gw1.41.216.1 IAGLU INDOLE-3-ACETATE BETA-D-GLUCOSYLTRANSFERASE AGI: AT4G15550. Pop. Ort.: POPTRDRAFT_645347 - grail3.0021016401 histidinolphosphate transaminase UDPglycosyltransferase/ transferase, transferring glycosyl groups (Mo et al. 2006) Gene Summary Type IAR1 IAA-ALANINE RESISTANT 1: member of IAA-alanine resistance protein 1 metal ion transmembrane transporter AGI: AT1G68100. Pop. Ort.: POPTRDRAFT_720768 - estExt_Genewise1_v1.C_LG_VIII2016 IAR3 IAA-ALANINE RESISTANT 3: encodes a member of the six Arabidopsis IAA-amino acid conjugate hydrolase subfamily and conjugates and conjugates IAA-Ala in vitro. Gene is expressed most strongly in roots, stems, and flowers. References IAA-Ala conjugate hydrolase/ metallopeptidase AGI: AT1G51760. Pop. Ort.: POPTRDRAFT_711792 (ILL11) - estExt_Genewise1_v1.C_LG_III0403 IAR4 IAA-ALANINE RESISTANT 4: Arabidopsis thaliana pyruvate dehydrogenase E1a-like subunit. 81% identical to a previously characterized Arabidopsis mitochondrial PDH E1a-subunit, AT1G59900. AGI: AT1G24180. Pop. Ort.: POPTRDRAFT_1090032 - estExt_Genewise1Plus.C_LG_X1893 oxidoreductase, acting on the aldehyde or oxo group of donors, disulfide as acceptor / pyruvate dehydrogenase (acetyl-transferring) IGS-like AGI: AT2G04400. Pop. Ort.: POPTRDRAFT_834976 - estExt_fgenesh4_pm.C_LG_XIV0483 indole-3-glycerol phosphate synthase (IGPS) ILL5 Encodes a member of the six Arabidopsis IAA-amino acid conjugate hydrolase subfamily and conjugates and is very similar to IAR3. IAA-amino acid conjugate hydrolase/ metallopeptidase AGI: AT1G51780. Pop. Ort.: POPTRDRAFT_711792 (ILL11) - estExt_Genewise1_v1.C_LG_III0403 ILR1 IAA-LEUCINE RESISTANT 1: Hydrolyzes amino acid conjugates of the plant growth regulator indole-3-acetic acid (IAA), including IAA-Leu and IAA-Phe. Uses Mg and Co ions as cofactors. Process: Auxin metabolic process (Bartel and Fink 1995). AGI: AT3G02875. Pop. Ort.: POPTRDRAFT_763045 (ILL1) - fgenesh4_pg.C_LG_VI001355 IAA-Leu conjugate hydrolase/ IAA-Phe conjugate hydrolase/ metallopeptidase (Quint et al. 2009) (Bartel and Fink 1995) Gene Summary Type IRX3 IRREGULAR XYLEM 3: Encodes a xylem-specific cellulose synthase that is phosphorylated on one or more serine residues (on either S185 or one of S180 or S181). cellulose synthase Process: Cellulose synthase activity (Taylor et al. 1999). References (Atanassov et al. 2009; Zhong et al. 2006b) AGI: AT5G17420. Pop. Ort.: POPTRDRAFT_717644 - estExt_Genewise1_v1.C_LG_VI2188 KAN1 KANADI: GARP family member. Encodes a KANADI protein (KAN) that regulates organ polarity in Arabidopsis. KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclear-localized protein in the GARP family of putative transcription factors. Together with KAN2, this gene appears to be involved in the development of the carpel and the outer integument of the ovule. Along with KAN2 and KAN4, KAN1 appears to be required for proper regulation of PIN1 in early embryogenesis. transcription factor (Baucher et al. 2007; Pekker et al. 2005; Wu et al. 2008) Process: Abaxial cell fate specification (Pekker et al. 2005), adaxial/abaxial axis specification (Wu et al. 2008), polarity specification of adaxial/abaxial axis (Ha et al. 2007), radial pattern formation and xylem and phloem pattern formation (Emery et al. 2003). AGI: AT5G16560. Pop. Ort.: POPTRDRAFT_755990 - fgenesh4_pg.C_LG_II002170 KAN2 KANADI 2: MYB family transcription factor member. Encodes a KANADI protein (KAN) that regulates organ polarity in Arabidopsis. KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclearlocalized protein in the GARP family of putative transcription factors. Together with KAN2, this gene appears to be involved in the development of the carpel and the outer integument of the ovule. Along with KAN2 and KAN4, KAN1 appears to be required for proper regulation of PIN1 in early embryogenesis. DNA binding / transcription factor (Baucher et al. 2007; Pekker et al. 2005; Wu et al. 2008) DNA binding / transcription factor (Baucher et al. 2007; Pekker et al. 2005; Wu et al. 2008) Process: Polarity specification of adaxial/abaxial axis (Ha et al. 2007). AGI: AT1G32240. Pop. Ort.: POPTRDRAFT_590054 - eugene3.00290237 KAN3 KANADI 3: GARP family member. Encodes a KANADI protein (KAN) that regulates organ polarity in Arabidopsis. KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclear-localized protein in the GARP family of putative transcription factors. Together with KAN2, this gene appears to be involved in the development of the carpel and the outer integument of the ovule. Along with KAN2 and KAN4, KAN1 appears to be required for proper regulation of PIN1 in early embryogenesis. AGI: AT4G17695. Pop. Ort.: POPTRDRAFT_590054 - eugene3.00290237 Gene Summary Type KAN4/ATS ABERRANT TESTA SHAPE: Encodes a member of the KANADI family of putative transcription factors. Involved in integument formation during ovule development and expressed at the boundary between the inner and outer integuments. It is essential for directing laminar growth of the inner integument. Along with KAN1 and KAN2, KAN4 is involved in proper localization of PIN1 in early embryogenesis. DNA binding / transcription factor References (McAbee et al. 2006) Process: Integument development (Kelley et al. 2009) and ovule development (Leon-Kloosterziel et al. 1994). AGI: AT5G42630. Pop. Ort.: POPTRDRAFT_917686 - e_gw1.40.547.1 KAPP KINASE ASSOCIATED PROTEIN PHOSPHATASE: kinase associated protein phosphatase composed of three domains: an amino-terminal signal anchor, a kinase interaction (KI) domain, and a type 2C protein phosphatase catalytic region. Process: Regulation of meristem structural organization (Stone et al. 1998) and negative regulator of CLV1 signaling (Trotochaud et al. 1999). phosphoprotein phosphatase/ protein kinase binding / protein serine/threonine phosphatase (Williams et al. 1997) AGI: AT5G19280. Pop. Ort.: POPTRDRAFT_805045 - fgenesh4_pm.C_LG_X000351 LAS Lateral Suppressor: GRAS transcription factor family member. It is involved in the initiation of axillary meristems during both the vegetative and reproductive growth phases and functions upstream of REV and AXR1 in the regulation of shoot branching. transcription factor (Raman et al. 2008) Process: Regulation of transcription (Riechmann et al. 2000) and secondary shoot formation (Greb et al. 2003). AGI: AT1G55580. Pop. Ort.: POPTRDRAFT_550683 (GRAS44) - eugene3.00013124 LAX3 LIKE AUX1 3: Encodes an auxin influx carrier LAX3 (Like Aux1) that promotes lateral root emergence. Auxininduced expression of LAX3 in turn induces a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia. Process: Auxin polar transport (Swarup et al. 2008). AGI: AT1G77690. Pop. Ort.: POPTRDRAFT_643656 (PtrAUX8) - grail3.0003074001 LCV1 LIKE COV 1 AGI: AT2G20130. Pop. Ort.: POPTRDRAFT_669317 - grail3.0020005701 amino acid transmembrane transporter/ auxin influx transmembrane transporter/ transporter (Vandenbuss che et al. 2010) Gene Summary Type MAB1 MACCI-BOU catalytic/ pyruvate dehydrogenase (acetyl-transferring) AGI: AT5G50850. Pop. Ort.: POPTRDRAFT_829373 - estExt_fgenesh4_pm.C_LG_I0194 MAX1/CYP 711A1 Encodes a protein with similarity to thromboxane-A synthase, member of the CYP711A cytochrome P450 family. MAX1 is a specific repressor of vegetative axillary buds generated by the axillary meristem. Expressed in vascular traces in the rosette stem and axillary buds throughout plant development. Mutants have increased axillary branches. Along with MAX3,4 thought to mediate control of shoot branching via synthesis of a signal molecule which is transported over long distance mediated by MAX2. cDNA supports the existence of the longer transcript predicted for this locus, no cDNA isolated for shorter transcript. MAX1 downregulates 11 genes involved in flavonoid pathway (CHS, CHI, F3H, F3'H, FLS, DFR, ANS, UFGT, RT, AAC and GST). electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding References (Lazar and Goodman 2006) Process: Auxin polar transport (Bennett et al. 2006), positive regulation of flavonoid biosynthetic process (Lazar and Goodman 2006), regulation of meristem structural organization (Stirnberg et al. 2002) and secondary shoot formation (Booker et al. 2005). AGI: AT2G26170. Pop. Ort.: POPTRDRAFT_352660 (CYP711A8) - fgenesh1_pg.C_LG_VI001581 MAX2 MORE AXILLARY BRANCHES 2: ORE9 family member. The mutations at MAX2 cause increased hypocotyl and petiole elongation in light-grown seedlings. Positional cloning identifies MAX2 as a member of the F-box leucine-rich repeat family of proteins. MAX2 is identical to ORE9, a proposed regulator of leaf senescence. Involved in positive regulation of light responses. ubiquitin-protein ligase (Stirnberg et al. 2007; Shen et al. 2007) Process: Auxin polar transport (Bennett et al. 2006), regulation of meristem structural organization (Stirnberg et al. 2002) and shoot morphogenesis (Stirnberg et al. 2007). AGI: AT2G42620. Pop. Ort.: POPTRDRAFT_1099491 - estExt_Genewise1Plus.C_LG_XIV2555 MAX3/CC D7 CAROTENOID CLEAVAGE DIOXYGENASE 7: MAX3 encodes a plastidic dioxygenase that can cleave multiple carotenoids. AGI: AT2G44990. Pop. Ort.: POPTRDRAFT_781295 - fgenesh4_pg.C_scaffold_40000045 CAROTENOID CLEAVAGE DIOXYGENASE 7 (Schwartz et al. 2004; Zou et al. 2006; Booker et al. 2004) Gene Summary Type MAX4/CC D8 CAROTENOID CLEAVAGE DIOXYGENASE 8: Encodes a protein with similarity to carotenoid cleaving deoxygenases, the enzymes that cleave beta-carotene. Involved in the production of a graft transmissable signal to suppress axillary branching. Protein is localized to chloroplast stroma and expressed primarily in root tip. Mutants in the gene exhibit increased shoot branching, and light-dependent defects in hook opening and hypocotyl/root elongation. Only upregulated by auxin in the root and hypocotyl, and this is not required for the inhibition of shoot branching. oxidoreductase, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen Process: Auxin metabolic process (Auldridge et al. 2006), auxin polar transport (Bennett et al. 2006), response to auxin stimulus (Sorefan et al. 2003) and secondary shoot formation (Auldridge et al. 2006; Sorefan et al. 2003). References (Schwartz et al. 2004; Alder et al. 2008) AGI: AT4G32810. Pop. Ort.: POPTRDRAFT_561749 - eugene3.00061708 miR156A Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. misc_RNA (Martin et al. 2010; Wu et al. 2009) AGI: AT2G25095. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_769294 fgenesh4_pg.C_LG_X000784, POPTRDRAFT_793900 fgenesh4_pg.C_scaffold_9189000001, POPTRDRAFT_656548 - grail3.0010026801, POPTRDRAFT_733659 - estExt_Genewise1_v1.C_LG_XV2187, POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_769914 - fgenesh4_pg.C_LG_X001404 miR156B Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. misc_RNA (Martin et al. 2010; Wu et al. 2009) AGI: AT4G30972. Pop. Ort.: POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_793900 fgenesh4_pg.C_scaffold_9189000001 miR156C Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. AGI: AT4G31877. Pop. Ort.: POPTRDRAFT_769914 - fgenesh4_pg.C_LG_X001404, POPTRDRAFT_656548 grail3.0010026801, POPTRDRAFT_754682 - fgenesh4_pg.C_LG_II000862, POPTRDRAFT_646571 grail3.0018026401 misc_RNA (Martin et al. 2010; Wu et al. 2009) Gene Summary Type miR156D Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. misc_RNA References (Martin et al. 2010; Wu et al. 2009) AGI: AT5G10945. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_769914 fgenesh4_pg.C_LG_X001404, POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_733659 estExt_Genewise1_v1.C_LG_XV2187, POPTRDRAFT_656548 - grail3.0010026801, POPTRDRAFT_793900 fgenesh4_pg.C_scaffold_9189000001 miR156E Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. AGI: AT5G11977. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_769914 fgenesh4_pg.C_LG_X001404, POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_575458 eugene3.00150853, POPTRDRAFT_733659 - estExt_Genewise1_v1.C_LG_XV2187, POPTRDRAFT_656548 grail3.0010026801, POPTRDRAFT_770592 - fgenesh4_pg.C_LG_X002082, POPTRDRAFT_793900 fgenesh4_pg.C_scaffold_9189000001 miR156F misc_RNA (Martin et al. 2010; Wu et al. 2009) - Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. misc_RNA (Martin et al. 2010; Wu et al. 2009) AGI: AT5G26147. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_947685 e_gw1.9962.5.1, POPTRDRAFT_813446 - fgenesh4_pm.C_scaffold_57000049, POPTRDRAFT_769914 fgenesh4_pg.C_LG_X001404, POPTRDRAFT_764848 - fgenesh4_pg.C_LG_VII001193, POPTRDRAFT_755123 fgenesh4_pg.C_LG_II001303, POPTRDRAFT_733659 estExt_Genewise1_v1.C_LG_XV2187, POPTRDRAFT_656548 - grail3.0010026801, POPTRDRAFT_793900 - fgenesh4_pg.C_scaffold_9189000001 miR156G Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. misc_RNA (Martin et al. 2010; Wu et al. 2009) AGI: AT2G19425. Pop. Ort.: POPTRDRAFT_1117116 - estExt_Genewise1Plus.C_1520155 miR156H Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change. AGI: AT5G55835. Pop. Ort.: POPTRDRAFT_576281 estExt_Genewise1_v1.C_LG_XV2187 - eugene3.00160416, POPTRDRAFT_733659 - misc_RNA (Martin et al. 2010; Wu et al. 2009) Gene Summary Type miR165A Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA AGI: AT1G01183. Pop. Ort.: POPTRDRAFT_778882 (HB7) - fgenesh4_pg.C_LG_XVIII000250, POPTRDRAFT_832118 (HB8) - estExt_fgenesh4_pm.C_LG_VI0713, POPTRDRAFT_292259 - gw1.6326.1.1 miR165B Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA AGI: AT4G00885. Pop. Ort.: POPTRDRAFT_778882 (HB7) - fgenesh4_pg.C_LG_XVIII000250, POPTRDRAFT_832118 (HB8) - estExt_fgenesh4_pm.C_LG_VI0713, POPTRDRAFT_292259 - gw1.6326.1.1 miR166A Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA AGI: AT2G46685. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486 miR166B Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA AGI: AT3G61897. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486 miR166C Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA AGI: AT5G08712. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486 miR166D Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA AGI: AT5G08717. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486 miR166E Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. AGI: AT5G41905. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486 misc_RNA References (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) Gene Summary Type miR166F Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA AGI: AT5G43603. Pop. Ort.: POPTRDRAFT_768574 - fgenesh4_pg.C_LG_X000064, POPTRDRAFT_763035 fgenesh4_pg.C_LG_VI001345 miR166G Dominant gain of function alleles have enlarged meristems, fasciated stems and radialized leaves. During early embryo development expression is reciprocal to target mRNAs but then changes to overlapping expression with targets. Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4. misc_RNA References (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) (Kim et al. 2005; Mallory et al. 2004; Yao et al. 2009) AGI: AT5G63715. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486 miR172A Encodes a microRNA that targets several genes containing AP2 domains including AP2. misc_RNA AGI: AT2G28056. Pop. Ort.: POPTRDRAFT_743690 - estExt_Genewise1_v1.C_1230150 miR172B Encodes a microRNA that targets several genes containing AP2 domains including AP2. misc_RNA AGI: AT5G04275. Pop. Ort.: POPTRDRAFT_565769 (DHQD4) - eugene3.00100327, POPTRDRAFT_820288 (RAP3) - estExt_fgenesh4_pg.C_LG_VIII0359, POPTRDRAFT_770475 (RAP4) - fgenesh4_pg.C_LG_X001965, POPTRDRAFT_575387 - eugene3.00150782 MP MONOPTEROS: Encodes a transcription factor (auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5)) mediating embryo axis formation and vascular development. Similar to AUXIN RESPONSIVE FACTOR 1 (ARF1) shown to bind to auxin responsive elements (AREs), and to the maize transcriptional activator VIVIPAROUS 1 (VP1). In situ hybridization shows expression in provascular tissue of embryos, the emerging shoot primordia, then is restricted to provascular tissue, and in the root central vascular cylinder. Process: meristem development and root development (Vidaurre et al. 2007), response to auxin stimulus (Ouellet et al. 2001), xylem and phloem pattern formation and longitudinal axis specification (Przemeck et al. 1996). AGI: AT1G19850. Pop. Ort.: POPTRDRAFT_652033 - grail3.0002064402 transcription factor (Lee et al. 2010; Held et al. 2008; Wu et al. 2009) (Lee et al. 2010; Held et al. 2008; Wu et al. 2009) (Johnson and Douglas 2007; Wenzel et al. 2007) Gene Summary Type References NIT1 NITRILASE 1: Mutants are resistant to indole-3-acetonitrile (IAN). NIT1 catalyzes the terminal activation step in indole-acetic acid biosynthesis. Predominantly expressed isoform of nitrilase isoenzyme family. Aggregation of NIT1 in cells directly abutting wound sites is one of the earliest events associated with wound and herbicide-induced cell death. The protein undergoes thiolation following treatment with the oxidant tert-butylhydroperoxide. It is also involved in the conversion of IAN to IAM (indole-3-acetamide) and other non-auxin-related metabolic processes. indole-3acetonitrile nitrilase/ indole-3acetonitrile nitrile hydratase/ nitrilase (Vorwerk et al. 2001; Hillebrand et al. 1998; Normanly et al. 1997) Process: Indoleacetic acid biosynthetic process (Muller et al. 1998). AGI: AT3G44310. Pop. Ort.: POPTRDRAFT_782522 (NIT1) - fgenesh4_pg.C_scaffold_66000137 NIT2 NITRILASE 2: Encodes an enzyme that catalyzes the hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA) (nitrile aminohydrolase, EC 3.5.5.1) and IAN to indole-3-acetamide (IAM) at lower levels. Mutants have reduced sensitivity to IAN and are sensitive to IAA. This enzyme likely participates in other non-auxin-related metabolic pathways. Process: Indoleacetic acid biosynthetic process (Muller et al. 1998). indole-3acetonitrile nitrilase/ indole-3acetonitrile nitrile hydratase/ nitrilase (Vorwerk et al. 2001; Hillebrand et al. 1998) AGI: AT3G44300. Pop. Ort.: POPTRDRAFT_782522 (NIT1) - fgenesh4_pg.C_scaffold_66000137 NIT4 NITRILASE 4: encodes a nitrilase isomer. The purified enzyme shows a strong substrate specificity for beta-cyano-Lalanine, a intermediate product of the cyanide detoxification pathway. AGI: AT5G22300. Pop. Ort.: POPTRDRAFT_782522 (NIT1) - fgenesh4_pg.C_scaffold_66000137 PAI1 PHOSPHORIBOSYLANTHRANILATE ISOMERASE 1: Encodes phosphoribosylanthranilate isomerase which catalyzes the third step of the tryptophan biosynthetic pathway. Member of gene family. 3-cyanoalanine hydratase/ cyanoalanine nitrilase/ indole-3acetonitrile nitrilase/ nitrilase/ nitrile hydratase phosphoribosylanth ranilate isomerase (Piotrowski et al. 2001) (Li et al. 1995) AGI: AT1G07780. Pop. Ort.: POPTRDRAFT_564037 - eugene3.00080632 PAI2 PHOSPHORIBOSYLANTHRANILATE ISOMERASE 2: Encodes phosphoribosylanthranilate isomerase which catalyzes the third step in the tryptophan biosynthetic pathway. AGI: AT5G05590. Pop. Ort.: POPTRDRAFT_564037 - eugene3.00080632 phosphoribosylanth ranilate isomerase (Li et al. 1995) Gene Summary Type PAI3 PHOSPHORIBOSYLANTHRANILATE ISOMERASE 3: Encodes phosphoribosylanthranilate isomerase which catalyzes the third step in tryptophan biosynthesis. phosphoribosylanth ranilate isomerase References (Li et al. 1995) AGI: AT1G29410. Pop. Ort.: POPTRDRAFT_564037 - eugene3.00080632 PAT1/TRP1 TRYPTOPHAN BIOSYNTHESIS 1: Encodes the tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase (PAT1, called trpD in bacteria). Converts anthranilate and phosphoribosylpyrophosphate into phosphoribosylanthranilate and inorganic pyrophosphate. anthranilate phosphoribosyltrans ferase (Rose et al. 1997) AGI: AT5G17990. Pop. Ort.: POPTRDRAFT_423398 - gw1.XII.1858.1 PDC2 PYRUVATE DECARBOXYLASE-2 AGI: AT5G54960. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442 PDC3 PYRUVATE DECARBOXYLASE-3 AGI: AT5G01330. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442 PDHE1_ALPHA PYRUVATE DEHYDROGENASE E1 ALPHA AGI: AT1G01090. Pop. Ort.: POPTRDRAFT_755473 - grail3.0080008401 carboxy-lyase/ catalytic/ magnesium ion binding / pyruvate decarboxylase/ thiamin pyrophosphate binding carboxy-lyase/ catalytic/ magnesium ion binding / pyruvate decarboxylase/ thiamin pyrophosphate binding / transferase pyruvate dehydrogenase (acetyl-transferring) (Klok et al. 2002) Gene Summary Type PDHE1_BETA PYRUVATE DEHYDROGENASE E1 BETA: Encodes a putative plastid pyruvate dehydrogenase E1 beta subunit that is distinct from the mitochondrial pyruvate dehydrogenase E1 beta subunit. pyruvate dehydrogenase (acetyl-transferring) AGI: AT1G30120. Pop. Ort.: POPTRDRAFT_668506 - fgenesh4_pg.C_LG_II001653 PHB PHABULOSA: Member of the III HD-Zip family. Dominant PHB mutations cause transformation of abaxial leaf fates into adaxial leaf fates. Has overlapping functions with PHAVOLUTA, REVOLUTA and CORONA. DNA binding / transcription factor Process: Adaxial/abaxial pattern formation (McConnell and Barton 1998), meristem initiation, polarity specification of adaxial/abaxial axis and primary shoot apical meristem specification (Prigge et al. 2005). AGI: AT2G34710. Pop. Ort.: POPTRDRAFT_815792 (HB4) - estExt_fgenesh4_pg.C_LG_I2905 PHV PHAVOLUTA: Member of the III HD-Zip family. Dominant PHV mutations cause transformation of abaxial leaf fates into adaxial leaf fates. Has overlapping functions with PHABULOSA, REVOLUTA and CORONA/ATHB15 in patterning the apical portion of the embryo. DNA binding / protein binding / transcription factor Process: Adaxial/abaxial axis specification (McConnell et al. 2001), meristem initiation, polarity specification of adaxial/abaxial axis and primary shoot apical meristem specification (Prigge et al. 2005). AGI: AT1G30490. Pop. Ort.: POPTRDRAFT_815792 (HB4) - estExt_fgenesh4_pg.C_LG_I2905 PIN1 PIN-FORMED 1: Encodes an auxin efflux carrier involved in shoot and root development. It is involved in the maintenance of embryonic auxin gradients. Loss of function severely affects organ initiation, pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. PIN1 is involved in the determination of leaf shape by actively promoting development of leaf margin serrations. In roots, the protein mainly resides at the basal end of the vascular cells, but weak signals can be detected in the epidermis and the cortex. Expression levels and polarity of this auxin efflux carrier change during primordium development suggesting that cycles of auxin build-up and depletion accompany, and may direct, different stages of primordium development. PIN1 action on plant development does not strictly require function of PGP1 and PGP19 proteins. Process: Auxin polar transport (Petrasek et al. 2006), root development (Galweiler et al. 1998), shoot development (Vernoux et al. 2000) and xylem and phloem pattern formation (Alonso-Peral et al. 2006). AGI: AT1G73590. Pop. Ort.: POPTRDRAFT_728847 (PIN7) (PIN7) - estExt_Genewise1_v1.C_LG_XII1068 transporter References (Hawker and Bowman 2004; Mallory et al. 2004; Baucher et al. 2007; Ochando et al. 2008) (Hawker and Bowman 2004; Baucher et al. 2007; Chandler et al. 2007; Ochando et al. 2008) (Helariutta and Bhalerao 2003; Borghi et al. 2007; Wenzel et al. 2007; Weijers et al. 2005) Gene Summary Type PIN3 PIN-FORMED 3: A regulator of auxin efflux and involved in differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles. In roots, PIN3 is expressed without pronounced polarity in tiers two and three of the columella cells, at the basal side of vascular cells, and to the lateral side of pericycle cells of the elongation zone. PIN3 overexpression inhibits root cell growth. Protein phosphorylation plays a role in PIN3 trafficking to the plasma membrane. auxin:hydrogen symporter/ transporter References (Harrison and Masson 2008) Process: Auxin polar transport (Friml et al. 2002b), root development and regulation of root meristem growth (Blilou et al. 2005) and root hair initiation and elongation (Lee and Cho 2006). AGI: AT1G70940. Pop. Ort.: POPTRDRAFT_803601 (PIN6) (PIN6) - fgenesh4_pm.C_LG_VIII000556 PIN4 PIN-FORMED 4: Encodes a putative auxin efflux carrier that is localized in developing and mature root meristems. It is involved in the maintenance of embryonic auxin gradients. A role for AtPIN4 in generating a sink for auxin below the quiescent center of the root meristem that is essential for auxin distribution and patterning is proposed. In the root, PIN4 is detected around the quiescent center and cells surrounding it, and localizes basally in provascular cells. PIN4 expression is upregulated in brassinosteroid-insensitive mutant (Li et al. 2005). auxin:hydrogen symporter/ transporter (Weijers et al. 2005) Process: Auxin polar transport (Petrasek et al. 2006; Friml et al. 2002a), root development (Friml et al. 2002a) and pattern specification process (Blilou et al. 2005). AGI: AT2G01420. Pop. Ort.: POPTRDRAFT_803601 (PIN6) (PIN6) - fgenesh4_pm.C_LG_VIII000556 PLT1 PLETHORA 1: Encodes a member of the AINTEGUMENTA-like (AIL) subclass of the AP2/EREBP family of transcription factors and is essential for quiescent center (QC) specification and stem cell activity. It is a key effector for establishment of the stem cell niche during embryonic pattern formation. It is transcribed in response to auxin accumulation and is dependent on auxin response transcription factors. Process: Stem cell maintenance (Aida et al. 2004). AGI: AT3G20840. Pop. Ort.: POPTRDRAFT_758079 (RAP23) (RAP23) - fgenesh4_pg.C_LG_III001621 transcription factor (Galinha et al. 2007) Gene Summary Type References PLT2 PLETHORA 2: Encodes a member of the AINTEGUMENTA-like (AIL) subclass of the AP2/EREBP family of transcription factors and is essential for quiescent center (QC) specification and stem cell activity. It is a key effector for establishment of the stem cell niche during embryonic pattern formation. It is transcribed in response to auxin accumulation and is dependent on auxin response transcription factors. transcription factor (Galinha et al. 2007) Process: Stem cell maintenance (Aida et al. 2004). AGI: AT1G51190. Pop. Ort.: POPTRDRAFT_758079 (RAP23) (RAP23) - fgenesh4_pg.C_LG_III001621 PXL2 AGI: AT4G28650. Pop. Ort.: POPTRDRAFT_553299 - eugene3.00002614 leucine-rich repeat transmembrane protein kinase, putative REV/IFL1 REVOLUTA: Member of the III HD-Zip family. REVOLUTA regulates meristem initiation at lateral positions. Has overlapping functions with PHAVOLUTA and PHABULOSA. DNA binding / lipid binding / transcription factor Process: Cell differentiation (Zhong and Ye 1999), meristem initiation (Otsuga et al. 2001), polarity specification of adaxial/abaxial axis (Prigge et al. 2005) and xylem and phloem pattern formation (Emery et al. 2003). AGI: AT5G60690. Pop. Ort.: POPTRDRAFT_741921 (HB2) - estExt_Genewise1_v1.C_660759 ROP1 RHO-RELATED PROTEIN FROM PLANTS 1: Expressed in the cambial zone and differentiating xylem in eucalyptus. Encodes a pollen-specific Rop GTPase, member of the Rho family of small GTP binding proteins that interacts with RIC3 and RIC4 to control tip growth in pollen tubes. These three proteins promote the proper targeting of exocytic vesicles in the pollen tube tip. ROP1 activity is regulated by the REN1 GTPase activator protein. AGI: AT3G51300. Pop. Ort.: POPTRDRAFT_827046 - estExt_fgenesh4_pg.C_570059 RPL REPLUMLESS: Encodes a homeodomain transcription factor. Has sequence similarity to the Arabidopsis ovule development regulator Bell1. Binds directly to the AGAMOUS cis-regulatory element. Its localization to the nucleus is dependent on the coexpression of either STM or BP. Mutant has additional lateral organs and phyllotaxy defect. Process: Internode patterning and xylem and phloem pattern formation (Smith and Hake 2003), vegetative to reproductive phase transition of meristem and maintenance of floral meristem identity (Smith et al. 2004), floral whorl morphogenesis (Bao et al. 2004), shoot development (Kanrar et al. 2006) and secondary shoot formation (Kanrar et al. 2008). AGI: AT5G02030. Pop. Ort.: POPTRDRAFT_218986 - gw1.VII.3291.1 GTP binding / GTPase activating protein binding / GTPase/ protein binding DNA binding / sequence-specific DNA binding / transcription factor (Hirakawa et al. 2010) (Hawker and Bowman 2004; Baucher et al. 2007; Ochando et al. 2008) (Foucart et al. 2009) (Bao et al. 2004; Rutjens et al. 2009) Gene Summary Type SCR SCARECROW: GRAS transcription factor family member. Encodes a member of a novel family having similarity to DNA binding proteins containing basic-leucine zipper regions; scr is expressed in cortex/endodermal initial cells and in the endodermal cell lineage. Regulates the radial organization of the root. Is required cell-autonomously for distal specification of the quiescent center, which in turn regulates stem cell fate of immediately surrounding cells. SCR appears to be a direct target of SHR. protein binding / protein homodimerization/ sequence-specific DNA binding / transcription factor Process: Asymmetric cell division (Di Laurenzio et al. 1996) and radial pattern formation (Wysocka-Diller et al. 2000). AGI: AT3G54220. Pop. Ort.: POPTRDRAFT_589585 (GRAS2) - eugene3.00280321 SHR SHORT ROOT: Involved in radial organization of the root and shoot axial organs. Essential for normal shoot gravitropism. The protein moves in a highly specific manner from the cells of the stele in which it is synthesized outward. Movement requires sequences within the GRAS and VHIID domains. Process: Asymmetric cell division and radial pattern formation (Helariutta et al. 2000). protein binding / sequence-specific DNA binding / transcription factor AGI: AT4G37650. Pop. Ort.: POPTRDRAFT_586010 (GRAS7) - eugene3.01860017 STM SHOOT MERISTEMLESS: Class I knotted-like homeodomain protein that is required for shoot apical meristem (SAM) formation during embryogenesis and for SAM function throughout the lifetime of the plant. Functions by preventing incorporation of cells in the meristem center into differentiating organ primordia. transcription factor Process: Cytokinin biosynthetic process (Yanai et al. 2005), regulation of meristem structural organization (Lenhard et al. 2002) and stem cell maintenance (Brand et al. 2002). References (Scheres et al. 1995; WysockaDiller et al. 2000; Cui et al. 2007; Paquette and Benfey 2005) (Gallagher and Benfey 2009; Cui et al. 2007; Paquette and Benfey 2005; Levesque et al. 2006) (Groover et al. 2006; Kanrar et al. 2006) AGI: AT1G62360. Pop. Ort.: POPTRDRAFT_811717 - fgenesh4_pm.C_scaffold_166000014 SUR1 SUPERROOT 1: Confers auxin overproduction. Mutants have an over-proliferation of lateral roots. Encodes a C-S lyase involved in converting S-alkylthiohydroximate to thiohydroximate in glucosinolate biosynthesis. Process: Indoleacetic acid biosynthetic process (Boerjan et al. 1995) and regulation of cell growth by extracellular stimulus (De Grauwe et al. 2005). Salkylthiohydroxima te lyase/ carbonsulfur lyase/ transaminase AGI: AT2G20610. Pop. Ort.: POPTRDRAFT_836654 (AMT1) - estExt_fgenesh4_pm.C_640067 T10O8.30 AGI: AT5G01320. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442 pyruvate decarboxylase, putative (Seo et al. 1998; Stepanova et al. 2005) Gene Summary Type T14P4.22 AGI: AT1G02590. Pop. Ort.: POPTRDRAFT_588889 (AAO3) - eugene3.27080003 aldehyde putative T22N19.10 AGI: AT5G13360. Pop. Ort.: POPTRDRAFT_750995 (GH3-7) - fgenesh4_pg.C_LG_I000598 auxin-responsive GH3 family protein T22N19.20 AGI: AT5G13370. Pop. Ort.: POPTRDRAFT_750995 (GH3-7) - fgenesh4_pg.C_LG_I000598 auxin-responsive GH3 family protein T24P13.11 AGI: AT1G26730. Pop. Ort.: POPTRDRAFT_765774 - fgenesh4_pg.C_LG_VIII000788 EXS family protein / ERD1/XPR1/SYG1 family protein TDR/PXY AGI: AT5G61480. Pop. Ort.: POPTRDRAFT_1073831 - estExt_Genewise1Plus.C_LG_III1142 leucine-rich repeat transmembrane protein kinase, putative TGG1 THIOGLUCOSIDE GLUCOHYDROLASE 1: member of Glycoside Hydrolase Family 1. encodes one of two known functional myrosinase enzymes in Arabidopsis. The enzyme catalyzes the hydrolysis of glucosinolates into compounds that are toxic to various microbes and herbivores. hydrolase, hydrolyzing Oglycosyl compounds / thioglucosidase AGI: AT5G26000. Pop. Ort.: POPTRDRAFT_800515 - fgenesh4_pm.C_LG_IV000202 TGG2 GLUCOSIDE GLUCOHYDROLASE 2: Myrosinase (thioglucoside glucohydrolase) gene involved in glucosinoloate metabolism. AGI: AT5G25980. Pop. Ort.: POPTRDRAFT_800515 - fgenesh4_pm.C_LG_IV000202 TSA1 TRYPTOPHAN SYNTHASE ALPHA CHAIN: Catalyzes the conversion of indole-3-glycerolphosphate to indole, the penultimate reaction in the biosynthesis of tryptophan. Functions as a heterocomplex with tryptophan synthase beta subunit (TSA2). AGI: AT3G54640. Pop. Ort.: POPTRDRAFT_818693 - estExt_fgenesh4_pg.C_LG_V1322 References oxidase, hydrolase, hydrolyzing Oglycosyl compounds / thioglucosidase tryptophan synthase (Hirakawa et al. 2010; Etchells and Turner 2010) (Alvarez et al. 2008; Barth and Jander 2006) (Barth and Jander 2006) Gene Summary Type TSA-like AGI: AT4G02610. Pop. Ort.: POPTRDRAFT_818693 - estExt_fgenesh4_pg.C_LG_V1322 tryptophan synthase, alpha subunit, putative TSB1 TRP2 TRYPTOPHAN SYNTHASE BETA-SUBUNIT 1: A.thaliana tryptophan synthase beta subunit (trpB) tryptophan synthase References (Jing et al. 2009) Process: Indoleacetic acid biosynthetic process (Normanly et al. 1993). AGI: AT5G54810. Pop. Ort.: POPTRDRAFT_888009 - e_gw1.XI.471.1 TSB2 TRYPTOPHAN SYNTHASE BETA-SUBUNIT 2: Tryptophan synthase beta. Expressed at low levels in all tissues. tryptophan synthase AGI: AT4G27070. Pop. Ort.: POPTRDRAFT_888009 - e_gw1.XI.471.1 VND7 VASCULAR RELATED NAC-DOMAIN PROTEIN 7: NAM (no apical meristem) family member. Encodes a NACdomain transcription factor with transcriptional activation activity that is involved in xylem formation. Induces transdifferentiation of various cells into protoxylem vessel elements. Located in the nucleus. Expression induced in the presence of auxin, cytokinin and brassinosteroids. Process: Response to brassinosteroid stimulus, response to cytokinin stimulus and xylem development (Kubo et al. 2005). anscription activator/ transcription factor/ transcription regulator (Soyano et al. 2008; Baucher et al. 2007; Kubo et al. 2005) AGI: AT1G71930. Pop. Ort.: POPTRDRAFT_592235 (NAC055) - eugene3.00410078 WES1 Encodes an IAA-amido synthase that conjugates Asp and other amino acids to auxin in vitro. Lines carrying insertions in this gene are hypersensitive to auxin. indole-3-acetic acid amido synthetase (Park et al. 2007) Process: Auxin homeostasis and response to auxin stimulus (Staswick et al. 2005). AGI: AT4G27260. Pop. Ort.: POPTRDRAFT_571444 (GH3-6) - eugene3.00130808 WOL WOODEN LEG: Histidine kinase, cytokinin-binding receptor that transduces cytokinin signals across the plasma membrane. Process: Cytokinin mediated signaling pathway (Hwang et al. 2002), embryonic root morphogenesis (Mahonen et al. 2000) and regulation of shoot development (Riefler et al. 2006). AGI: AT2G01830. Pop. Ort.: POPTRDRAFT_766213 - fgenesh4_pg.C_LG_VIII001227 cytokinin receptor/ osmosensor/ phosphoprotein phosphatase/ protein histidine kinase (Kuroha et al. 2006; Nishimura et al. 2004; FrancoZorrilla et al. 2005; Baucher et al. 2007) Gene Summary Type References WOX4 WUSCHEL RELATED HOMEOBOX 4: Encodes a WUSCHEL-related homeobox gene family member with 65 amino acids in its homeodomain. Proteins in this family contain a sequence of eight residues (TLPLFPMH) downstream of the homeodomain called the WUS box. This protein also contains an acidic domain approximately 10 residues upstream of the WUS box. transcription factor (Ji et al. 2010) transcription factor (Gonzali et al. 2005) AGI: AT1G46480. Pop. Ort.: POPTRDRAFT_836454 - estExt_fgenesh4_pm.C_400124 WOX5 WUSCHEL RELATED HOMEOBOX 5: Response to auxin stimulus AGI: AT3G11260. Pop. Ort.: POPTRDRAFT_805455 - fgenesh4_pm.C_LG_X000761 WUS WUSCHEL: Homeobox gene controlling the stem cell pool. Expressed in the stem cell organizing center of meristems. Required to keep the stem cells in an undifferentiated state. Regulation of WUS transcription is a central checkpoint in stem cell control. The size of the WUS expression domain controls the size of the stem cell population through WUS indirectly activating the expression of CLAVATA3 (CLV3) in the stem cells and CLV3 repressing WUS transcription through the CLV1 receptor kinase signaling pathway. Repression of WUS transcription through AGAMOUS (AG) activity controls stem cell activity in the determinate floral meristem. Binds to TAAT element core motif. DNA binding / protein binding / transcription factor/ transcription regulator (Finlayson et al. 2010; Ikeda et al. 2009; Su et al. 2009) Process: Maintenance of shoot apical meristem identity (Sonoda et al. 2007) and stem cell maintenance (Laux et al. 1996). AGI: AT2G17950. Pop. Ort.: POPTRDRAFT_827060 - estExt_fgenesh4_pg.C_570090 ZPR3 LITTLE ZIPPER 3: ZPR3 is a small-leucine zipper containing protein that is involved in the establishment of leaf polarity. protein binding (Kim et al. 2008) Process: adaxial/abaxial axis specification, leaf shaping and vascular tissue pattern formation and meristem regulation and maintenance (Wenkel et al. 2007) and negative regulation of transcription factor activity (Kim et al. 2008). AGI: AT3G52770. Pop. Ort.: POPTRDRAFT_560740 - eugene3.00060699 ZPR4 AGI: AT2G36307. Pop. Ort.: POPTRDRAFT_567947 - eugene3.00102505 (Wenkel et al. 2007) Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The plethora genes mediate patterning of the arabidopsis root stem cell niche. Cell 119 (1):109-120. doi:10.1016/j.cell.2004.09.018 S0092867404008931 [pii] Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem J 416 (2):289-296. doi:BJ20080568 [pii] 10.1042/BJ20080568 Alonso-Peral MM, Candela H, del Pozo JC, Martinez-Laborda A, Ponce MR, Micol JL (2006) The hve/cand1 gene is required for the early patterning of leaf venation in arabidopsis. Development 133 (19):3755-3766. doi:dev.02554 [pii] 10.1242/dev.02554 Alvarez S, He Y, Chen S (2008) Comparative investigations of the glucosinolate-myrosinase system in arabidopsis suspension cells and hypocotyls. Plant Cell Physiol 49 (3):324-333. doi:pcn007 [pii] 10.1093/pcp/pcn007 Atanassov, II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of arabidopsis secondary cell walls. J Biol Chem 284 (6):3833-3841. doi:M807456200 [pii] 10.1074/jbc.M807456200 Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterization of three members of the arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45 (6):982-993. doi:TPJ2666 [pii] 10.1111/j.1365-313X.2006.02666.x Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the athb-8 homeobox gene is restricted to provascular cells in arabidopsis thaliana. Development 121 (12):4171-4182 Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The arabidopsis athb-8 hd-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126 (2):643-655 Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, cyp83b1 and cyp83a1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127 (1):108118 Bao X, Franks RG, Levin JZ, Liu Z (2004) Repression of agamous by bellringer in floral and inflorescence meristems. Plant Cell 16 (6):1478-1489. doi:10.1105/tpc.021147 tpc.021147 [pii] Bartel B, Fink GR (1995) Ilr1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268 (5218):1745-1748 Barth C, Jander G (2006) Arabidopsis myrosinases tgg1 and tgg2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46 (4):549-562. doi:TPJ2716 [pii] 10.1111/j.1365-313X.2006.02716.x Baucher M, El Jaziri M, Vandeputte O (2007) From primary to secondary growth: Origin and development of the vascular system. J Exp Bot 58 (13):3485-3501 Belin C, Megies C, Hauserova E, Lopez-Molina L (2009) Abscisic acid represses growth of the arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21 (8):2253-2268. doi:tpc.109.067702 [pii] 10.1105/tpc.109.067702 Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, Pautot V (2006) Knat6: An arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell 18 (8):1900-1907. doi:tpc.106.041988 [pii] 10.1105/tpc.106.041988 Bender J, Fink GR (1998) A myb homologue, atr1, activates tryptophan gene expression in arabidopsis. Proc Natl Acad Sci U S A 95 (10):5655-5660 Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis aux1 gene: A permease-like regulator of root gravitropism. Science 273 (5277):948-950 Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The arabidopsis max pathway controls shoot branching by regulating auxin transport. Curr Biol 16 (6):553-563. doi:S0960-9822(06)01119-5 [pii] 10.1016/j.cub.2006.01.058 Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The pin auxin efflux facilitator network controls growth and patterning in arabidopsis roots. Nature 433 (7021):39-44. doi:nature03184 [pii] 10.1038/nature03184 Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in arabidopsis, confers auxin overproduction. Plant Cell 7 (9):1405-1419 Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) Apl regulates vascular tissue identity in arabidopsis. Nature 426 (6963):181-186. doi:10.1038/nature02100 nature02100 [pii] Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) Max3/ccd7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14 (14):1232-1238. doi:10.1016/j.cub.2004.06.061 S0960982204004725 [pii] Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) Max1 encodes a cytochrome p450 family member that acts downstream of max3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8 (3):443-449. doi:S1534-5807(05)00013-4 [pii] 10.1016/j.devcel.2005.01.009 Borghi L, Bureau M, Simon R (2007) Arabidopsis jagged lateral organs is expressed in boundaries and coordinates knox and pin activity. Plant Cell 19 (6):1795-1808. doi:tpc.106.047159 [pii] 10.1105/tpc.106.047159 Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in arabidopsis on a feedback loop regulated by clv3 activity. Science 289 (5479):617-619. doi:8704 [pii] Brand U, Grunewald M, Hobe M, Simon R (2002) Regulation of clv3 expression by two homeobox genes in arabidopsis. Plant Physiol 129 (2):565-575. doi:10.1104/pp.001867 Brandstatter I, Kieber JJ (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in arabidopsis. Plant Cell 10 (6):1009-1019 Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) Brl1 and brl3 are novel brassinosteroid receptors that function in vascular differentiation in arabidopsis. Development 131 (21):5341-5351. doi:131/21/5341 [pii] 10.1242/dev.01403 Carrier DJ, Bakar NT, Swarup R, Callaghan R, Napier RM, Bennett MJ, Kerr ID (2008) The binding of auxin to the arabidopsis auxin influx transporter aux1. Plant Physiol 148 (1):529-535. doi:pp.108.122044 [pii] 10.1104/pp.108.122044 Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The arabidopsis atr1 myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137 (1):253-262. doi:pp.104.054395 [pii] 10.1104/pp.104.054395 Ceserani T, Trofka A, Gandotra N, Nelson T (2009) Vh1/brl2 receptor-like kinase interacts with vascular-specific adaptor proteins vit and vik to influence leaf venation. Plant J 57 (6):1000-1014. doi:TPJ3742 [pii] 10.1111/j.1365-313X.2008.03742.x Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The ap2 transcription factors dornroschen and dornroschen-like redundantly control arabidopsis embryo patterning via interaction with phavoluta. Development 134 (9):1653-1662. doi:dev.001016 [pii] 10.1242/dev.001016 Clark SE, Williams RW, Meyerowitz EM (1997) The clavata1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in arabidopsis. Cell 89 (4):575-585 Clay NK, Nelson T (2002) Vh1, a provascular cell-specific receptor kinase that influences leaf cell patterns in arabidopsis. Plant Cell 14 (11):2707-2722 Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138 (2):767-777. doi:pp.104.055756 [pii] 10.1104/pp.104.055756 Cock JM, McCormick S (2001) A large family of genes that share homology with clavata3. Plant Physiol 126 (3):939-942 Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting shr movement defines a single layer of endodermis in plants. Science 316 (5823):421-425. doi:316/5823/421 [pii] 10.1126/science.1139531 D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the arabidopsis response regulator gene family to cytokinin. Plant Physiol 124 (4):1706-1717 De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: Tripartite control of growth in the arabidopsis hypocotyl. Plant Cell Physiol 46 (6):827-836. doi:pci111 [pii] 10.1093/pcp/pci111 De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxindependent regulation of lateral root positioning in the basal meristem of arabidopsis. Development 134 (4):681-690. doi:dev.02753 [pii] 10.1242/dev.02753 De Smet I, Vassileva V, De Rybel B, Levesque MP, Grunewald W, Van Damme D, Van Noorden G, Naudts M, Van Isterdael G, De Clercq R, Wang JY, Meuli N, Vanneste S, Friml J, Hilson P, Jurgens G, Ingram GC, Inze D, Benfey PN, Beeckman T (2008) Receptor-like kinase acr4 restricts formative cell divisions in the arabidopsis root. Science 322 (5901):594-597. doi:322/5901/594 [pii] 10.1126/science.1160158 DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The clavata1-related bam1, bam2 and bam3 receptor kinase-like proteins are required for meristem function in arabidopsis. Plant J 45 (1):1-16. doi:TPJ2592 [pii] 10.1111/j.1365-313X.2005.02592.x Deyoung BJ, Clark SE (2008) Bam receptors regulate stem cell specification and organ development through complex interactions with clavata signaling. Genetics 180 (2):895-904. doi:genetics.108.091108 [pii] 10.1534/genetics.108.091108 Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The scarecrow gene regulates an asymmetric cell division that is essential for generating the radial organization of the arabidopsis root. Cell 86 (3):423-433. doi:S0092-8674(00)80115-4 [pii] Douglas SJ, Riggs CD (2005) Pedicel development in arabidopsis thaliana: Contribution of vascular positioning and the role of the brevipedicellus and erecta genes. Dev Biol 284 (2):451-463. doi:S0012-1606(05)00391-X [pii] 10.1016/j.ydbio.2005.06.011 Doyle MR, Amasino RM (2009) A single amino acid change in the enhancer of zeste ortholog curly leaf results in vernalization-independent, rapid flowering in arabidopsis. Plant Physiol 151 (3):1688-1697. doi:pp.109.145581 [pii] 10.1104/pp.109.145581 Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of arabidopsis shoots by class iii hd-zip and kanadi genes. Curr Biol 13 (20):1768-1774. doi:S0960982203007188 [pii] Etchells JP, Turner SR (2010) The pxy-cle41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137 (5):767-774. doi:137/5/767 [pii] 10.1242/dev.044941 Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid clv3, cle19, and cle40 peptides trigger consumption of the root meristem in arabidopsis through a clavata2-dependent pathway. Plant Cell 17 (9):2542-2553. doi:tpc.105.034009 [pii] 10.1105/tpc.105.034009 Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in arabidopsis. Plant Physiol 152 (4):1914-1927. doi:pp.109.148833 [pii] 10.1104/pp.109.148833 Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for arabidopsis planar polarity is mediated by combined aux1, ein2, and gnom activity. Curr Biol 16 (21):2143-2149. doi:S0960-9822(06)02204-4 [pii] 10.1016/j.cub.2006.08.091 Foucart C, Jauneau A, Gion JM, Amelot N, Martinez Y, Panegos P, Grima-Pettenati J, Sivadon P (2009) Overexpression of egrop1, a eucalyptus vascular-expressed rac-like small gtpase, affects secondary xylem formation in arabidopsis thaliana. New Phytologist 183 (4):1014-1029. doi:10.1111/j.1469-8137.2009.02910.x Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in arabidopsis and the roles of cytokinin receptors cre1/ahk4 and ahk3. Plant Physiol 138 (2):847-857. doi:pp.105.060517 [pii] 10.1104/pp.105.060517 Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002a) Atpin4 mediates sink-driven auxin gradients and root patterning in arabidopsis. Cell 108 (5):661-673. doi:S0092867402006566 [pii] Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator pin3 mediates tropism in arabidopsis. Nature 415 (6873):806809. doi:10.1038/415806a 415806a [pii] Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) Plethora proteins as dose-dependent master regulators of arabidopsis root development. Nature 449 (7165):1053-1057. doi:nature06206 [pii] 10.1038/nature06206 Gallagher KL, Benfey PN (2009) Both the conserved gras domain and nuclear localization are required for short-root movement. Plant J 57 (5):785-797. doi:TPJ3735 [pii] 10.1111/j.1365-313X.2008.03735.x Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by atpin1 in arabidopsis vascular tissue. Science 282 (5397):2226-2230 Glover BJ, Torney K, Wilkins CG, Hanke DE (2008) Cytokinin independent-1 regulates levels of different forms of cytokinin in arabidopsis and mediates response to nutrient stress. J Plant Physiol 165 (3):251-261. doi:S0176-1617(07)00098-3 [pii] 10.1016/j.jplph.2007.01.011 Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene agamous during early organogenesis. Development 132 (3):429-438. doi:dev.01600 [pii] 10.1242/dev.01600 Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P (2005) A turanose-insensitive mutant suggests a role for wox5 in auxin homeostasis in arabidopsis thaliana. Plant J 44 (4):633-645. doi:TPJ2555 [pii] 10.1111/j.1365-313X.2005.02555.x Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the lateral suppressor gene in arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17 (9):1175-1187. doi:10.1101/gad.260703 17/9/1175 [pii] Green KA, Prigge MJ, Katzman RB, Clark SE (2005) Corona, a member of the class iii homeodomain leucine zipper gene family in arabidopsis, regulates stem cell specification and organogenesis. Plant Cell 17 (3):691-704. doi:tpc.104.026179 [pii] 10.1105/tpc.104.026179 Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y (2006) The populus homeobox gene arborknox1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Molecular Biology 61 (6):917-932. doi:10.1007/s11103-006-0059-y Guo Y, Qin G, Gu H, Qu LJ (2009) Dof5.6/hca2, a dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in arabidopsis. Plant Cell 21 (11):3518-3534. doi:tpc.108.064139 [pii] 10.1105/tpc.108.064139 Ha CM, Jun JH, Nam HG, Fletcher JC (2007) Blade-on-petiole 1 and 2 control arabidopsis lateral organ fate through regulation of lob domain and adaxial-abaxial polarity genes. Plant Cell 19 (6):1809-1825. doi:tpc.107.051938 [pii] 10.1105/tpc.107.051938 Hamant O, Nogue F, Belles-Boix E, Jublot D, Grandjean O, Traas J, Pautot V (2002) The knat2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol 130 (2):657-665. doi:10.1104/pp.004564 Hanzawa Y, Takahashi T, Komeda Y (1997) Acl5: An arabidopsis gene required for internodal elongation after flowering. Plant J 12 (4):863-874 Harrison BR, Masson PH (2008) Arl2, arg1 and pin3 define a gravity signal transduction pathway in root statocytes. Plant J 53 (2):380-392. doi:TPJ3351 [pii] 10.1111/j.1365-313X.2007.03351.x Hawker NP, Bowman JL (2004) Roles for class iii hd-zip and kanadi genes in arabidopsis root development. Plant Physiol 135 (4):2261-2270. doi:10.1104/pp.104.040196 pp.104.040196 [pii] Hejatko J, Ryu H, Kim GT, Dobesova R, Choi S, Choi SM, Soucek P, Horak J, Pekarova B, Palme K, Brzobohaty B, Hwang I (2009) The histidine kinases cytokininindependent1 and arabidopsis histidine kinase2 and 3 regulate vascular tissue development in arabidopsis shoots. Plant Cell Helariutta Y, Bhalerao R (2003) Between xylem and phloem: The genetic control of cambial activity in plants. Plant Biology 5 (5):465-472 Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The short-root gene controls radial patterning of the arabidopsis root through radial signaling. Cell 101 (5):555-567. doi:S0092-8674(00)80865-X [pii] Held MA, Penning B, Brandt AS, Kessans SA, Yong WD, Scofield SR, Carpita NC (2008) Small-interfering rnas from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proceedings of the National Academy of Sciences of the United States of America 105 (51):20534-20539. doi:10.1073/pnas.0809408105 Hillebrand H, Bartling D, Weiler EW (1998) Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-acetic acid biosynthesis in arabidopsis thaliana. Plant Mol Biol 36 (1):89-99 Hirakawa Y, Kondo Y, Fukuda H (2010) Regulation of vascular development by cle peptide-receptor systems. J Integr Plant Biol 52 (1):8-16. doi:JIPB904 [pii] 10.1111/j.1744-7909.2010.00904.x Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a cle peptide/receptor system. Proc Natl Acad Sci U S A 105 (39):15208-15213. doi:0808444105 [pii] 10.1073/pnas.0808444105 Hord CL, Chen C, Deyoung BJ, Clark SE, Ma H (2006) The bam1/bam2 receptor-like kinases are important regulators of arabidopsis early anther development. Plant Cell 18 (7):1667-1680. doi:tpc.105.036871 [pii] 10.1105/tpc.105.036871 Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in arabidopsis. Plant Physiol 129 (2):500-515. doi:10.1104/pp.005504 Ibdah M, Chen YT, Wilkerson CG, Pichersky E (2009) An aldehyde oxidase in developing seeds of arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol 150 (1):416-423. doi:pp.109.135848 [pii] 10.1104/pp.109.135848 Ikeda M, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis wuschel is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21 (11):3493-3505. doi:tpc.109.069997 [pii] 10.1105/tpc.109.069997 Ikezaki M, Kojima M, Sakakibara H, Kojima S, Ueno Y, Machida C, Machida Y (2010) Genetic networks regulated by asymmetric leaves1 (as1) and as2 in leaf development in arabidopsis thaliana: Knox genes control five morphological events. Plant J 61 (1):70-82. doi:TPJ4033 [pii] 10.1111/j.1365-313X.2009.04033.x Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T (2006) The dwarf phenotype of the arabidopsis acl5 mutant is suppressed by a mutation in an upstream orf of a bhlh gene. Development 133 (18):3575-3585. doi:133/18/3575 [pii] 10.1242/dev.02535 Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-cle peptides as suppressors of plant stem cell differentiation. Science 313 (5788):842-845. doi:313/5788/842 [pii] 10.1126/science.1128436 Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an nac (nam-ataf1,2-cuc2) transcription factor attenuates aba signalling for efficient basal defence towards blumeria graminis f. Sp. Hordei in arabidopsis. Plant J 56 (6):867-880. doi:TPJ3646 [pii] 10.1111/j.1365-313X.2008.03646.x Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ (2010) Wox4 promotes procambial development. Plant Physiol 152 (3):1346-1356. doi:pp.109.149641 [pii] 10.1104/pp.109.149641 Jing Y, Cui D, Bao F, Hu Z, Qin Z, Hu Y (2009) Tryptophan deficiency affects organ growth by retarding cell expansion in arabidopsis. Plant J 57 (3):511-521. doi:TPJ3706 [pii] 10.1111/j.1365-313X.2008.03706.x Johnson LA, Douglas CJ (2007) Populus trichocarpa monopteros/auxin response factor5 (arf5) genes: Comparative structure, subfunctionalization, and populus arabidopsis microsynteny. Canadian Journal of Botany-Revue Canadienne De Botanique 85 (11):1058-1070. doi:10.1139/b07-065 Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in arabidopsis thaliana. Plant Cell Physiol 49 (9):1342-1349. doi:pcn109 [pii] 10.1093/pcp/pcn109 Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:Atp/adp isopentenyltransferases. Plant Cell Physiol 42 (7):677-685 Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith HM (2008) Regulatory networks that function to specify flower meristems require the function of homeobox genes pennywise and pound-foolish in arabidopsis. Plant J 54 (5):924-937. doi:TPJ3458 [pii] 10.1111/j.1365-313X.2008.03458.x Kanrar S, Onguka O, Smith HM (2006) Arabidopsis inflorescence architecture requires the activities of knox-bell homeodomain heterodimers. Planta 224 (5):1163-1173. doi:10.1007/s00425-006-0298-9 Kayes JM, Clark SE (1998) Clavata2, a regulator of meristem and organ development in arabidopsis. Development 125 (19):3843-3851 Kelley DR, Skinner DJ, Gasser CS (2009) Roles of polarity determinants in ovule development. Plant J 57 (6):1054-1064. doi:TPJ3752 [pii] 10.1111/j.1365-313X.2008.03752.x Kiba T, Yamada H, Mizuno T (2002) Characterization of the arr15 and arr16 response regulators with special reference to the cytokinin signaling pathway mediated by the ahk4 histidine kinase in roots of arabidopsis thaliana. Plant Cell Physiol 43 (9):1059-1066 Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-a response regulator, arr15, acts as a negative regulator in the cytokinin-mediated signal transduction in arabidopsis thaliana. Plant Cell Physiol 44 (8):868-874 Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by ahk3 through phosphorylation of arr2 in arabidopsis. Proc Natl Acad Sci U S A 103 (3):814-819. doi:0505150103 [pii] 10.1073/pnas.0505150103 Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) Microrna-directed cleavage of athb15 mrna regulates vascular development in arabidopsis inflorescence stems. Plant J 42 (1):84-94. doi:TPJ2354 [pii] 10.1111/j.1365-313X.2005.02354.x Kim YS, Kim SG, Lee M, Lee I, Park HY, Seo PJ, Jung JH, Kwon EJ, Suh SW, Paek KH, Park CM (2008) Hd-zip iii activity is modulated by competitive inhibitors via a feedback loop in arabidopsis shoot apical meristem development. Plant Cell 20 (4):920-933. doi:tpc.107.057448 [pii] 10.1105/tpc.107.057448 Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wisniewska J, Paciorek T, Benkova E, Friml J (2008) Arf gef-dependent transcytosis and polar delivery of pin auxin carriers in arabidopsis. Curr Biol 18 (7):526-531. doi:S0960-9822(08)00322-9 [pii] 10.1016/j.cub.2008.03.021 Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the arabidopsis auxin influx carrier aux1 uses a novel pathway distinct from pin1. Plant Cell 18 (11):3171-3181. doi:tpc.106.042770 [pii] 10.1105/tpc.106.042770 Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in arabidopsis root cultures. Plant Cell 14 (10):2481-2494 Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) Anac012, a member of the plant-specific nac transcription factor family, negatively regulates xylary fiber development in arabidopsis thaliana. Plant Journal 50 (6):1035-1048. doi:10.1111/j.1365-313X.2007.03109.x Koiwai H, Akaba S, Seo M, Komano T, Koshiba T (2000) Functional expression of two arabidopsis aldehyde oxidases in the yeast pichia pastoris. J Biochem 127 (4):659664 Koizumi K, Sugiyama M, Fukuda H (2000) A series of novel mutants of arabidopsis thaliana that are defective in the formation of continuous vascular network: Calling the auxin signal flow canalization hypothesis into question. Development 127 (15):3197-3204 Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by clv3 identified by in situ maldi-tof ms analysis. Science 313 (5788):845-848. doi:313/5788/845 [pii] 10.1126/science.1128439 Kramer EM, Bennett MJ (2006) Auxin transport: A field in flux. Trends Plant Sci 11 (8):382-386. doi:S1360-1385(06)00157-9 [pii] 10.1016/j.tplants.2006.06.002 Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19 (16):1855-1860. doi:19/16/1855 [pii] 10.1101/gad.1331305 Kuderova A, Urbankova I, Valkova M, Malbeck J, Brzobohaty B, Nemethova D, Hejatko J (2008) Effects of conditional ipt-dependent cytokinin overproduction on root architecture of arabidopsis seedlings. Plant Cell Physiol 49 (4):570-582. doi:pcn029 [pii] 10.1093/pcp/pcn029 Kuroha T, Ueguchi C, Sakakibara H, Satoh S (2006) Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Plant Cell Physiol 47 (2):234-243. doi:pci240 [pii] 10.1093/pcp/pci240 Laux T, Mayer KF, Berger J, Jurgens G (1996) The wuschel gene is required for shoot and floral meristem integrity in arabidopsis. Development 122 (1):87-96 Lazar G, Goodman HM (2006) Max1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in arabidopsis. Proc Natl Acad Sci U S A 103 (2):472476. doi:0509463102 [pii] 10.1073/pnas.0509463102 Lee DJ, Kim S, Ha YM, Kim J (2008) Phosphorylation of arabidopsis response regulator 7 (arr7) at the putative phospho-accepting site is required for arr7 to act as a negative regulator of cytokinin signaling. Planta 227 (3):577-587. doi:10.1007/s00425-007-0640-x Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive mirnas in arabidopsis. Nucleic Acids Research 38 (9):3081-3093. doi:10.1093/nar/gkp1240 Lee SH, Cho HT (2006) Pinoid positively regulates auxin efflux in arabidopsis root hair cells and tobacco cells. Plant Cell 18 (7):1604-1616. doi:tpc.105.035972 [pii] 10.1105/tpc.105.035972 Lehesranta SJ, Lichtenberger R, Helariutta Y (2009) Cell-to-cell communication in vascular morphogenesis. Curr Opin Plant Biol. doi:S1369-5266(09)00115-0 [pii] 10.1016/j.pbi.2009.09.004 Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) Wuschel controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438 (7071):1172-1175. doi:nature04270 [pii] 10.1038/nature04270 Lenhard M, Jurgens G, Laux T (2002) The wuschel and shootmeristemless genes fulfil complementary roles in arabidopsis shoot meristem regulation. Development 129 (13):3195-3206 Leon-Kloosterziel KM, Keijzer CJ, Koornneef M (1994) A seed shape mutant of arabidopsis that is affected in integument development. Plant Cell 6 (3):385-392. doi:10.1105/tpc.6.3.385 6/3/385 [pii] Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of the short-root developmental pathway in arabidopsis. PLoS Biol 4 (5):e143. doi:05-PLBI-RA-1464R2 [pii] 10.1371/journal.pbio.0040143 Li J, Zhao J, Rose AB, Schmidt R, Last RL (1995) Arabidopsis phosphoribosylanthranilate isomerase: Molecular genetic analysis of triplicate tryptophan pathway genes. Plant Cell 7 (4):447-461. doi:10.1105/tpc.7.4.447 7/4/447 [pii] Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in brassica and arabidopsis. Plant Cell 17 (10):2738-2753. doi:tpc.105.034397 [pii] 10.1105/tpc.105.034397 Li XG, Su YH, Zhao XY, Li W, Gao XQ, Zhang XS (2010) Cytokinin overproduction-caused alteration of flower development is partially mediated by cuc2 and cuc3 in arabidopsis. Gene 450 (1-2):109-120. doi:S0378-1119(09)00572-1 [pii] 10.1016/j.gene.2009.11.003 Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6 (12):1859-1876. doi:10.1105/tpc.6.12.1859 6/12/1859 [pii] Liu Z, Duguay J, Ma F, Wang TW, Tshin R, Hopkins MT, McNamara L, Thompson JE (2008) Modulation of eif5a1 expression alters xylem abundance in arabidopsis thaliana. Journal of Experimental Botany 59 (4):939-950. doi:10.1093/jxb/ern017 Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in arabidopsis roots. Plant Cell 17 (4):10901104. doi:tpc.104.029272 [pii] 10.1105/tpc.104.029272 Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor ahp6 regulate cell fate during vascular development. Science 311 (5757):94-98. doi:311/5757/94 [pii] 10.1126/science.1118875 Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the arabidopsis root. Genes Dev 14 (23):2938-2943 Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) Microrna control of phabulosa in leaf development: Importance of pairing to the microrna 5' region. EMBO J 23 (16):3356-3364. doi:10.1038/sj.emboj.7600340 7600340 [pii] Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martinez-Andujar C, Kumar MBA, Pupel P, Nonogaki H (2010) The microrna156 and microrna172 gene regulation cascades at post-germinative stages in arabidopsis. Seed Science Research 20 (2):79-87. doi:10.1017/s0960258510000085 Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America 105 (50):20027-20031. doi:10.1073/pnas.0805619105 Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in arabidopsis leaf vascular development. Plant Physiol 131 (3):1327-1339. doi:10.1104/pp.013623 McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ, Venugopala Reddy G, Meyerowitz EM, Bowman JL, Gasser CS (2006) Aberrant testa shape encodes a kanadi family member, linking polarity determination to separation and growth of arabidopsis ovule integuments. Plant J 46 (3):522-531. doi:TPJ2717 [pii] 10.1111/j.1365-313X.2006.02717.x McCarthy RL, Zhong R, Ye ZH (2009) Myb83 is a direct target of snd1 and acts redundantly with myb46 in the regulation of secondary cell wall biosynthesis in arabidopsis. Plant Cell Physiol 50 (11):1950-1964. doi:pcp139 [pii] 10.1093/pcp/pcp139 McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in arabidopsis. Development 125 (15):2935-2942 McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of phabulosa and phavoluta in determining radial patterning in shoots. Nature 411 (6838):709713. doi:10.1038/35079635 35079635 [pii] Mikkelsen MD, Fuller VL, Hansen BG, Nafisi M, Olsen CE, Nielsen HB, Halkier BA (2009) Controlled indole-3-acetaldoxime production through ethanol-induced expression of cyp79b2. Planta 229 (6):1209-1217. doi:10.1007/s00425-009-0907-5 Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) Nac transcription factors, nst1 and nst3, are key regulators of the formation of secondary walls in woody tissues of arabidopsis. Plant Cell 19 (1):270-280. doi:10.1105/tpc.106.047043 Mitsuda N, Ohme-Takagi M (2008) Nac transcription factors nst1 and nst3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J 56 (5):768-778. doi:TPJ3633 [pii] 10.1111/j.1365-313X.2008.03633.x Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of arabidopsis atp/adp isopentenyltransferases and trna isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A 103 (44):16598-16603. doi:0603522103 [pii] 10.1073/pnas.0603522103 Mizukami Y, Ma H (1997) Determination of arabidopsis floral meristem identity by agamous. Plant Cell 9 (3):393-408. doi:10.1105/tpc.9.3.393 9/3/393 [pii] Mo X, Zhu Q, Li X, Li J, Zeng Q, Rong H, Zhang H, Wu P (2006) The hpa1 mutant of arabidopsis reveals a crucial role of histidine homeostasis in root meristem maintenance. Plant Physiol 141 (4):1425-1435. doi:pp.106.084178 [pii] 10.1104/pp.106.084178 Muller A, Hillebrand H, Weiler EW (1998) Indole-3-acetic acid is synthesized from l-tryptophan in roots of arabidopsis thaliana. Planta 206 (3):362-369 Muller R, Borghi L, Kwiatkowska D, Laufs P, Simon R (2006) Dynamic and compensatory responses of arabidopsis shoot and floral meristems to clv3 signaling. Plant Cell 18 (5):1188-1198. doi:tpc.105.040444 [pii] 10.1105/tpc.105.040444 Muniz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blazquez MA, Tuominen H (2008) Acaulis5 controls arabidopsis xylem specification through the prevention of premature cell death. Development 135 (15):2573-2582. doi:dev.019349 [pii] 10.1242/dev.019349 Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001) Dfl1, an auxin-responsive gh3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25 (2):213-221. doi:tpj957 [pii] Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) Cyp83a1 and cyp83b1, two nonredundant cytochrome p450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in arabidopsis. Plant Physiol 133 (1):63-72 Neu D, Lehmann T, Elleuche S, Pollmann S (2007) Arabidopsis amidase 1, a member of the amidase signature family. FEBS J 274 (13):3440-3451. doi:EJB5876 [pii] 10.1111/j.1742-4658.2007.05876.x Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in arabidopsis. Plant Cell 16 (6):1365-1377. doi:10.1105/tpc.021477 tpc.021477 [pii] Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci U S A 90 (21):10355-10359 Normanly J, Grisafi P, Fink GR, Bartel B (1997) Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the nit1 gene. Plant Cell 9 (10):1781-1790. doi:10.1105/tpc.9.10.1781 9/10/1781 [pii] Ochando I, Gonzalez-Reig S, Ripoll JJ, Vera A, Martinez-Laborda A (2008) Alteration of the shoot radial pattern in arabidopsis thaliana by a gain-of-function allele of the class iii hd-zip gene incurvata4. International Journal of Developmental Biology 52 (7):953-961. doi:10.1387/ijdb.072306io Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis clv3 peptide directly binds clv1 ectodomain. Science 319 (5861):294. doi:319/5861/294 [pii] 10.1126/science.1150083 Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) Revoluta regulates meristem initiation at lateral positions. Plant J 25 (2):223-236. doi:tpj959 [pii] Ouellet F, Overvoorde PJ, Theologis A (2001) Iaa17/axr3: Biochemical insight into an auxin mutant phenotype. Plant Cell 13 (4):829-841 Paquette AJ, Benfey PN (2005) Maturation of the ground tissue of the root is regulated by gibberellin and scarecrow and requires short-root. Plant Physiol 138 (2):636-640. doi:138/2/636 [pii] 10.1104/pp.104.058362 Park JE, Seo PJ, Lee AK, Jung JH, Kim YS, Park CM (2007) An arabidopsis gh3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome b-regulated light signals in hypocotyl growth. Plant Cell Physiol 48 (8):1236-1241. doi:pcm086 [pii] 10.1093/pcp/pcm086 Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of cov1, a gene involved in the regulation of vascular patterning in the stem of arabidopsis. Development 130 (10):2139-2148 Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate arabidopsis organ asymmetry via modulation of kanadi activity. Plant Cell 17 (11):2899-2910. doi:tpc.105.034876 [pii] 10.1105/tpc.105.034876 Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) Pin proteins perform a rate-limiting function in cellular auxin efflux. Science 312 (5775):914-918. doi:1123542 [pii] 10.1126/science.1123542 Piotrowski M, Schonfelder S, Weiler EW (2001) The arabidopsis thaliana isogene nit4 and its orthologs in tobacco encode beta-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276 (4):2616-2621. doi:10.1074/jbc.M007890200 M007890200 [pii] Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62 (3):293-300. doi:S0031942202005630 [pii] Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class iii homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in arabidopsis development. Plant Cell 17 (1):61-76. doi:tpc.104.026161 [pii] 10.1105/tpc.104.026161 Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the arabidopsis gene monopteros in vascular development and plant cell axialization. Planta 200 (2):229-237 Quint M, Barkawi LS, Fan KT, Cohen JD, Gray WM (2009) Arabidopsis iar4 modulates auxin response by regulating auxin homeostasis. Plant Physiol 150 (2):748-758. doi:pp.109.136671 [pii] 10.1104/pp.109.136671 Ragni L, Belles-Boix E, Gunl M, Pautot V (2008) Interaction of knat6 and knat2 with brevipedicellus and pennywise in arabidopsis inflorescences. Plant Cell 20 (4):888-900. doi:tpc.108.058230 [pii] 10.1105/tpc.108.058230 Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K (2008) Interplay of mir164, cup-shaped cotyledon genes and lateral suppressor controls axillary meristem formation in arabidopsis thaliana. Plant J 55 (1):65-76. doi:TPJ3483 [pii] 10.1111/j.1365-313X.2008.03483.x Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the arabidopsis shoot apex. Science 310 (5748):663-667. doi:1116261 [pii] 10.1126/science.1116261 Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J (2009) Genome-wide comparative analysis of type-a arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res 19 (10):1178-1190. doi:cr200988 [pii] 10.1038/cr.2009.88 Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290 (5499):2105-2110. doi:9054 [pii] Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18 (1):40-54. doi:tpc.105.037796 [pii] 10.1105/tpc.105.037796 Romanov GA, Lomin SN, Schmulling T (2006) Biochemical characteristics and ligand-binding properties of arabidopsis cytokinin receptor ahk3 compared to cre1/ahk4 as revealed by a direct binding assay. J Exp Bot 57 (15):4051-4058. doi:erl179 [pii] 10.1093/jxb/erl179 Rose AB, Li J, Last RL (1997) An allelic series of blue fluorescent trp1 mutants of arabidopsis thaliana. Genetics 145 (1):197-205 Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009) Shoot apical meristem function in arabidopsis requires the combined activities of three bel1-like homeodomain proteins. Plant J 58 (4):641-654. doi:TPJ3809 [pii] 10.1111/j.1365-313X.2009.03809.x Scheres B, Dilaurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organization of the arabidopsis root display specific defects throughout the embryonic axis. Development 121 (1):53-62 Schwartz SH, Qin X, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes from arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279 (45):46940-46945. doi:10.1074/jbc.M409004200 M409004200 [pii] Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of arabidopsis thaliana. Plant Physiol 116 (2):687-693 Shen H, Luong P, Huq E (2007) The f-box protein max2 functions as a positive regulator of photomorphogenesis in arabidopsis. Plant Physiol 145 (4):1471-1483. doi:pp.107.107227 [pii] 10.1104/pp.107.107227 Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) Emb30 is essential for normal cell division, cell expansion, and cell adhesion in arabidopsis and encodes a protein that has similarity to sec7. Cell 77 (7):1051-1062. doi:0092-8674(94)90444-8 [pii] Smith HM, Campbell BC, Hake S (2004) Competence to respond to floral inductive signals requires the homeobox genes pennywise and pound-foolish. Curr Biol 14 (9):812-817. doi:10.1016/j.cub.2004.04.032 S0960982204003008 [pii] Smith HM, Hake S (2003) The interaction of two homeobox genes, brevipedicellus and pennywise, regulates internode patterning in the arabidopsis inflorescence. Plant Cell 15 (8):1717-1727 Smolen GA, Pawlowski L, Wilensky SE, Bender J (2002) Dominant alleles of the basic helix-loop-helix transcription factor atr2 activate stress-responsive genes in arabidopsis. Genetics 161 (3):1235-1246 Sonoda Y, Yao SG, Sako K, Sato T, Kato W, Ohto MA, Ichikawa T, Matsui M, Yamaguchi J, Ikeda A (2007) Sha1, a novel ring finger protein, functions in shoot apical meristem maintenance in arabidopsis. Plant J 50 (4):586-596. doi:TPJ3062 [pii] 10.1111/j.1365-313X.2007.03062.x Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) Max4 and rms1 are orthologous dioxygenase-like genes that regulate shoot branching in arabidopsis and pea. Genes Dev 17 (12):1469-1474. doi:10.1101/gad.256603 17/12/1469 [pii] Soyano T, Thitamadee S, Machida Y, Chua NH (2008) Asymmetric leaves2-like19/lateral organ boundaries domain30 and asl20/lbd18 regulate tracheary element differentiation in arabidopsis. Plant Cell 20 (12):3359-3373. doi:tpc.108.061796 [pii] 10.1105/tpc.108.061796 Spichal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmulling T (2004) Two cytokinin receptors of arabidopsis thaliana, cre1/ahk4 and ahk3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45 (9):1299-1305. doi:45/9/1299 [pii] 10.1093/pcp/pch132 Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17 (2):616-627. doi:tpc.104.026690 [pii] 10.1105/tpc.104.026690 Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in arabidopsis. Plant Cell 17 (8):2230-2242. doi:tpc.105.033365 [pii] 10.1105/tpc.105.033365 Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) Max2 participates in an scf complex which acts locally at the node to suppress shoot branching. Plant J 50 (1):80-94. doi:TPJ3032 [pii] 10.1111/j.1365-313X.2007.03032.x Stirnberg P, van De Sande K, Leyser HM (2002) Max1 and max2 control shoot lateral branching in arabidopsis. Development 129 (5):1131-1141 Stone JM, Trotochaud AE, Walker JC, Clark SE (1998) Control of meristem development by clavata1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol 117 (4):1217-1225 Su YH, Zhao XY, Liu YB, Zhang CL, O'Neill SD, Zhang XS (2009) Auxin-induced wus expression is essential for embryonic stem cell renewal during somatic embryogenesis in arabidopsis. Plant J 59 (3):448-460. doi:TPJ3880 [pii] 10.1111/j.1365-313X.2009.03880.x Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis asa1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21 (5):1495-1511. doi:tpc.108.064303 [pii] 10.1105/tpc.108.064303 Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier lax3 promotes lateral root emergence. Nat Cell Biol 10 (8):946-954. doi:ncb1754 [pii] 10.1038/ncb1754 Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in arabidopsis thaliana. J Biol Chem 276 (28):26405-26410. doi:10.1074/jbc.M102130200 M102130200 [pii] Tanaka H, Watanabe M, Sasabe M, Hiroe T, Tanaka T, Tsukaya H, Ikezaki M, Machida C, Machida Y (2007) Novel receptor-like kinase ale2 controls shoot development by specifying epidermis in arabidopsis. Development 134 (9):1643-1652. doi:dev.003533 [pii] 10.1242/dev.003533 Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y (2002) Acr4, a putative receptor kinase gene of arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol 43 (4):419-428 Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11 (5):769-780 To JP, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-a arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19 (12):3901-3914. doi:tpc.107.052662 [pii] 10.1105/tpc.107.052662 Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The clavata1 receptor-like kinase requires clavata3 for its assembly into a signaling complex that includes kapp and a rho-related protein. Plant Cell 11 (3):393-406 Vandenbussche F, Petrasek J, Zadnikova P, Hoyerova K, Pesek B, Raz V, Swarup R, Bennett M, Zazimalova E, Benkova E, Van Der Straeten D (2010) The auxin influx carriers aux1 and lax3 are involved in auxin-ethylene interactions during apical hook development in arabidopsis thaliana seedlings. Development 137 (4):597-606. doi:137/4/597 [pii] 10.1242/dev.040790 Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R (2002) The homeobox gene brevipedicellus is a key regulator of inflorescence architecture in arabidopsis. Proc Natl Acad Sci U S A 99 (7):4730-4735. doi:10.1073/pnas.072626099 072626099 [pii] Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J (2000) Pin-formed 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127 (23):51575165 Vidaurre DP, Ploense S, Krogan NT, Berleth T (2007) Amp1 and mp antagonistically regulate embryo and meristem development in arabidopsis. Development 134 (14):2561-2567. doi:dev.006759 [pii] 10.1242/dev.006759 Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Muller A, Weiler EW, Piotrowski M (2001) Enzymatic characterization of the recombinant arabidopsis thaliana nitrilase subfamily encoded by the nit2/nit1/nit3-gene cluster. Planta 212 (4):508-516 Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tor A, Zipfel C, de Wit PJ, Jones JD, Tor M, Thomma BP (2008) A genome-wide functional investigation into the roles of receptor-like proteins in arabidopsis. Plant Physiol 147 (2):503-517. doi:pp.108.119487 [pii] 10.1104/pp.108.119487 Wang G, Long Y, Thomma BP, de Wit PJ, Angenent GC, Fiers M (2010) Functional analyses of the clavata2-like proteins and their domains that contribute to clavata2 specificity. Plant Physiol 152 (1):320-331. doi:pp.109.148197 [pii] 10.1104/pp.109.148197 Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G, Hooykaas P, Offringa R (2005) Maintenance of embryonic auxin distribution for apical-basal patterning by pin-formed-dependent auxin transport in arabidopsis. Plant Cell 17 (9):2517-2526. doi:tpc.105.034637 [pii] 10.1105/tpc.105.034637 Wenkel S, Emery J, Hou BH, Evans MMS, Barton MK (2007) A feedback regulatory module formed by little zipper and hd-zipiii genes. Plant Cell 19 (11):3379-3390. doi:10.1105/tpc.107.055772 Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of monopteros and pin-formed1 expression during leaf vein pattern formation in arabidopsis thaliana. Plant J 49 (3):387-398. doi:TPJ2977 [pii] 10.1111/j.1365-313X.2006.02977.x Williams RW, Clark SE, Meyerowitz EM (1999) Genetic and physical characterization of a region of arabidopsis chromosome 1 containing the clavata1 gene. Plant Mol Biol 39 (1):171-176 Williams RW, Wilson JM, Meyerowitz EM (1997) A possible role for kinase-associated protein phosphatase in the arabidopsis clavata1 signaling pathway. Proc Natl Acad Sci U S A 94 (19):10467-10472 Wu G, Lin WC, Huang T, Poethig RS, Springer PS, Kerstetter RA (2008) Kanadi1 regulates adaxial-abaxial polarity in arabidopsis by directly repressing the transcription of asymmetric leaves2. Proc Natl Acad Sci U S A 105 (42):16392-16397. doi:0803997105 [pii] 10.1073/pnas.0803997105 Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of mir156 and mir172 regulates developmental timing in arabidopsis. Cell 138 (4):750-759. doi:10.1016/j.cell.2009.06.031 Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of scarecrow function reveals a radial patterning mechanism common to root and shoot. Development 127 (3):595-603 Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis knoxi proteins activate cytokinin biosynthesis. Curr Biol 15 (17):1566-1571. doi:S0960-9822(05)00844-4 [pii] 10.1016/j.cub.2005.07.060 Yao X, Wang H, Li H, Yuan Z, Li F, Yang L, Huang H (2009) Two types of cis-acting elements control the abaxial epidermis-specific transcription of the mir165a and mir166a genes. FEBS Lett 583 (22):3711-3717. doi:S0014-5793(09)00868-0 [pii] 10.1016/j.febslet.2009.10.076 Zhao L, Kim Y, Dinh TT, Chen X (2007) Mir172 regulates stem cell fate and defines the inner boundary of apetala3 and pistillata expression domain in arabidopsis floral meristems. Plant J 51 (5):840-849. doi:TPJ3181 [pii] 10.1111/j.1365-313X.2007.03181.x Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in arabidopsis: Involvement of cytochrome p450s cyp79b2 and cyp79b3. Genes Dev 16 (23):3100-3112. doi:10.1101/gad.1035402 Zhong R, Demura T, Ye ZH (2006a) Snd1, a nac domain transcription factor, is a key regulator of secondary wall synthesis in fibers of arabidopsis. Plant Cell 18 (11):31583170. doi:tpc.106.047399 [pii] 10.1105/tpc.106.047399 Zhong R, Richardson EA, Ye ZH (2007a) Two nac domain transcription factors, snd1 and nst1, function redundantly in regulation of secondary wall synthesis in fibers of arabidopsis. Planta 225 (6):1603-1611. doi:10.1007/s00425-007-0498-y Zhong RQ, Demura T, Ye ZH (2006b) Snd1, a nac domain transcription factor, is a key regulator of secondary wall synthesis in fibers of arabidopsis. Plant Cell 18 (11):3158-3170. doi:10.1105/tpc.106.047399 Zhong RQ, Richardson EA, Ye ZH (2007b) The myb46 transcription factor is a direct target of snd1 and regulates secondary wall biosynthesis in arabidopsis. Plant Cell 19 (9):2776-2792. doi:10.1105/tpc.107.053678 Zhong RQ, Taylor JJ, Ye ZH (1999) Transformation of the collateral vascular bundles into amphivasal vascular bundles in an arabidopsis mutant. Plant Physiol 120 (1):53-64 Zhong RQ, Ye ZH (1999) Ifl1, a gene regulating interfascicular fiber differentiation in arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11 (11):21392152 Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice high-tillering dwarf1 encoding an ortholog of arabidopsis max3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48 (5):687-698. doi:TPJ2916 [pii] 10.1111/j.1365-313X.2006.02916.x