Download 709_2010_211_MOESM2_ESM - Springer Static Content Server

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Polyclonal B cell response wikipedia , lookup

Ultrasensitivity wikipedia , lookup

Transcription factor wikipedia , lookup

Lipid signaling wikipedia , lookup

Clinical neurochemistry wikipedia , lookup

RNA-Seq wikipedia , lookup

Promoter (genetics) wikipedia , lookup

RNA polymerase II holoenzyme wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Point mutation wikipedia , lookup

Secreted frizzled-related protein 1 wikipedia , lookup

Gene therapy of the human retina wikipedia , lookup

Expression vector wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Endogenous retrovirus wikipedia , lookup

Biochemical cascade wikipedia , lookup

Signal transduction wikipedia , lookup

Gene expression wikipedia , lookup

Two-hybrid screening wikipedia , lookup

Silencer (genetics) wikipedia , lookup

Transcriptional regulation wikipedia , lookup

Gene regulatory network wikipedia , lookup

Paracrine signalling wikipedia , lookup

Transcript
Gene
Summary
Type
AAO1
ARABIDOPSIS ALDEHYDE OXIDASE 1
aldehyde oxidase/
indole-3acetaldehyde
oxidase
Process: Auxin biosynthetic process (Seo et al. 1998).
AGI: AT5G20960. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157
AAO3
ABSCISIC ALDEHYDE OXIDASE 3: Encodes the aldehyde oxidase delta isoform catalyzing the final step in
abscisic acid biosynthesis.
AGI: AT2G27150. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157
AAO4
ARABIDOPSIS ALDEHYDE OXIDASE 4: Encodes aldehyde oxidase AAO4 preferentially expressed in developing
seeds.
AGI: AT1G04580. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157
ACL5
ACAULIS 5: Encodes a spermine synthase. Required for internode elongation and vascular development, specifically
in the mechanism that defines the boundaries between veins and nonvein regions. This mechanism may be mediated by
polar auxin transport. Though ACL5 has been shown to function as a spermine synthase in E. coli, an ACL5 knockout
has no effect on the endogenous levels of free and conjugated polyamines in Arabidopsis, suggesting that ACL5 may
have a very specific or altogether different in vivo function.
Process: Auxin polar transport, phloem or xylem histogenesis (Clay and Nelson 2005) and vessel member cell
differentiation (Hanzawa et al. 1997).
AGI: AT5G19530. Pop. Ort.: POPTRDRAFT_717791 - estExt_Genewise1_v1.C_LG_VI2502
abscisic aldehyde
oxidase/ aldehyde
oxidase/ indole-3acetaldehyde
oxidase
aldehyde oxidase/
aryl-aldehyde
oxidase
spermine synthase/
thermospermine
synthase
References
(Seo et al.
1998)
(Jensen et al.
2008)
(Ibdah et al.
2009)
(Clay and
Nelson 2005;
Imai et al.
2006; Muniz
et al. 2008;
Kakehi et al.
2008;
Baucher et
al. 2007)
Gene
Summary
Type
ACR4
ARABIDOPSIS CRINKLY4: Encodes a membrane localized protein with similarity to receptor kinases which is
involved in epidermal cell differentiation. Flowers of mutants have disorganized ovule integument growth and
abnormal sepal margins. In the roots, mutants initiate more lateral roots but fewer laterals actually emerge due to
defects in lateral root formation. Mutants also display disorganized columella. The root phenotypes can be traced to
abnormalities in asymmetric divisions in the pericycle and root apex. Conflicting data regarding the role of the kinase
domain- which may or may not be required for function. Complementation studies indicate that the C-terminal domain
is also not required for signalling function. May be regulated by protein turnover which is mediated by endocytic
processes.
kinase/
transmembrane
receptor
protein
kinase
References
(De Smet et
al. 2008;
Tanaka et al.
2007)
Process: Embryonic development ending in seed dormancy (Tanaka et al. 2002), lateral root formation, regulation of
asymmetric cell division and root cap development (De Smet et al. 2008).
AGI: AT3G59420. Pop. Ort.: POPTRDRAFT_562238 - eugene3.00070176
AG
AGAMOUS: encoding a MADS domain transcription factor. Specifies floral meristem and carpel and stamen identity.
Binds CArG box sequences. It is the only C function gene. It interacts genetically with the other homeotic genes to
specify the floral organs.
DNA binding /
transcription factor
(Bao et al.
2004; Zhao
et al. 2007)
Process: stamen and carpel development (Gomez-Mena et al. 2005), leaf development (Doyle and Amasino 2009) and
maintenance of floral organ identity (Mizukami and Ma 1997)
AGI: AT4G18960. Pop. Ort.: POPTRDRAFT_758707 (PTAG1) - fgenesh4_pg.C_LG_IV000335
AHK2
ARABIDOPSIS HISTIDINE KINASE 2: Important regulator of vascular tissue development in Arabidopsis thaliana
shoots.
Process: Regulation of shoot development (Riefler et al. 2006).
AGI: AT5G35750. Pop. Ort.: POPTRDRAFT_775135 - fgenesh4_pg.C_LG_XIV001045
cytokinin receptor/
osmosensor/ protein
histidine kinase
(Hejatko et
al. 2009;
Riefler et al.
2006;
Nishimura et
al. 2004)
Gene
Summary
Type
AHK3
ARABIDOPSIS HISTIDINE KINASE 3: Important regulator of vascular tissue development in Arabidopsis thaliana
shoots. Encodes a histidine kinases, a cytokinin receptor that controls cytokinin-mediated leaf longevity through a
specific phosphorylation of the response regulator, ARR2.
cytokinin receptor/
osmosensor/ protein
histidine kinase
Process: Regulation of shoot development (Riefler et al. 2006).
AGI: AT1G27320. Pop. Ort.: POPTRDRAFT_554773 (PHK4) - eugene3.00031406
AHP6
ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6: AHP6 lacks the conserved histidine residue
(Asn83 in AHP6b), which is required for phosphotransfer, present in the other AHPs. AHP6 does not appear to have
phosphotransfer activity. Acts as an inhibitor of cytokinin signalling by interacting with the phosphorelay machinery.
Expressed in developing protoxylem and associated pericycle cell files. Negative regulator of cytokinin signalling.
Expression is down-regulated by cytokinins. There are two alternatively spliced genes for this locus, AHP6a and
AHP6b, differing in the length of the first exon. In ahp6-2 seedlings, only the AHP6a transcript is present. Members of
the AHP gene family include: AT3G21510 (AHP1), AT3G29350 (AHP2), AT5G39340 (AHP3), AT3G16360
(AHP4), AT1G03430 (AHP5) and AT1G80100 (AHP6).
histidine
phosphotransfer
kinase/ transferase,
transferring
phosphoruscontaining groups
References
(Spichal et
al. 2004;
FrancoZorrilla et al.
2005;
Hejatko et al.
2009; Riefler
et al. 2006;
Nishimura et
al. 2004;
Romanov et
al. 2006)
(Mähönen et
al. 2006)
Process: Cytokinin mediated signalling pathway, response to cytokinin stimulus and xylem development (Mähönen et
al. 2006).
AGI: AT1G80100. Pop. Ort.: POPTRDRAFT_815256 - estExt_fgenesh4_pg.C_LG_I1468
AMI1
AMIDASE 1: Encodes an enzyme with similarity to bacterial acylamidohydrolases and exhibits indole-3-acetamide
amidohydrolase activity in vitro. This enzyme may be involved in the in vivo biosynthesis of indole-acetic acid from
indole-3-acetamide, a native metabolite of A. thaliana. It appears to exist as a monomer.
Process: Indoleacetic acid biosynthetic process (Pollmann et al. 2003).
AGI: AT1G08980. Pop. Ort.: POPTRDRAFT_662772 (AMI1) - grail3.0016020901
amidase/ hydrolase,
acting on carbonnitrogen (but not
peptide) bonds /
indoleacetamide
hydrolase
(Neu et al.
2007)
Gene
Summary
Type
ANAC012
ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 12: NAM (no apical meristem) family member.
Negatively regulates xylary fiber development. Encodes SND1, a NAC Domain transcription factor involved in
secondary wall biosynthesis in fibers. Expressed specifically in interfascicular fibers and xylary fibers in stems.
Expressed in the procambium of stem inflorescences and root. May act as a negative regulator of secondary wall
thickening in xylary fibers. Acts redundantly with NST1 to control development of secondary walls in siliques.
transcription factor
Process: Lignin biosynthetic process (Mitsuda et al. 2007) and secondary cell wall biogenesis (Mitsuda et al. 2007;
Zhong et al. 2006a).
AGI: AT1G32770. Pop. Ort.: POPTRDRAFT_569285 (NAC068) - eugene3.00111299
ANAC101
ARABIDOPSIS NAC-DOMAIN PROTEIN 101: Encodes a NAC-domain transcription factor involved in xylem
formation. Induces transdifferentiation of various cells into metaxylem vessel elements. Located in the nucleus.
Expression induced in the presence of auxin, cytokinin and brassinosteroids.
Process: Response to brassinosteroid stimulus, response to cytokinin stimulus and xylem development (Kubo et al.
2005).
transcription
activator/
transcription factor/
transcription
regulator
References
(Ko et al.
2007;
Mitsuda et
al. 2007;
Zhong et al.
2007a;
Zhong et al.
2006b;
Zhong et al.
2007b;
Mitsuda and
OhmeTakagi 2008;
McCarthy et
al. 2009)
(Soyano et
al. 2008;
Baucher et
al. 2007;
Kubo et al.
2005)
AGI: AT5G62380. Pop. Ort.: POPTRDRAFT_773505 (NAC037) - fgenesh4_pg.C_LG_XII001280
AO2
ALDEHYDE OXIDASE 2
aldehyde oxidase
(Koiwai et
al. 2000)
AGI: AT3G43600. Pop. Ort.: POPTRDRAFT_767106 (AAO1) - fgenesh4_pg.C_LG_IX000157
APL
ALTERED PHLOEM DEVELOPMENT: MYB family transcription factor member. Encodes gene product that is
required for several aspects of phloem development in the root: a) the specific divisions organizing the phloem pole, b)
sieve element differentiation and c) the expression of a companion-specific gene. Mutant has a defect in the
organization of phloem poles in the root. apl seedlings have a short, determinate root with only occasional lateral
branches.
Process: Xylem and phloem development (Bonke et al. 2003).
AGI: AT1G79430. Pop. Ort.: POPTRDRAFT_765696 - fgenesh4_pg.C_LG_VIII000710
transcription factor/
transcription
regulator
(Baucher et
al. 2007)
Gene
Summary
Type
ARR15
RESPONSE REGULATOR 15: Encodes a nuclear response regulator that acts as a negative regulator in cytokininmediated signal transduction. Transcript accumulates in leaves and roots in response to cytokinin treatment.
transcription
regulator/
twocomponent
response regulator
Process: Cytokinin mediated signaling pathway (Hwang et al. 2002; Kiba et al. 2003) and response to cytokinin
stimulus (D'Agostino et al. 2000; Kiba et al. 2002; Kim et al. 2006).
References
(Kiba et al.
2002; Kiba et
al. 2003)
AGI: AT1G74890. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454
ARR5
ARABIDOPSIS RESPONSE REGULATOR 5: Encodes a transcription repressor that mediates a negative feedback
loop in cytokinin signaling. ARR5 expression is upregulated by Class I KNOX genes. Arr5 protein is stabilized by
cytokinin in a two-component phosphorelay.
Process: Cytokinin mediated signaling pathway (Hwang et al. 2002; To et al. 2007) and response to cytokinin stimulus
(Brandstatter and Kieber 1998; D'Agostino et al. 2000; Kim et al. 2006).
transcription
regulator/
twocomponent
response regulator
(D'Agostino
et al. 2000;
Spichal et al.
2004)
AGI: AT3G48100. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454
ARR6
RESPONSE REGULATOR 6: Encodes a Type-A response regulator that is responsive to cytokinin treatment. Its C-ter
domain is very short in comparison to other Arabidopsis ARRs (17 total). Arr6 protein is stabilized by cytokinin.
Process: Cytokinin mediated signaling pathway (Hwang et al. 2002; To et al. 2007) and response to cytokinin stimulus
(Brandstatter and Kieber 1998; D'Agostino et al. 2000; Kim et al. 2006).
transcription
regulator/
twocomponent
response regulator
(Ren et al.
2009)
AGI: AT5G62920. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454
ARR7
RESPONSE REGULATOR 7: Encodes a member of the Arabidopsis response regulator (ARR) family, most closely
related to ARR15. A two-component response regulator protein containing a phosphate accepting domain in the
receiver domain but lacking a DNA binding domain in the output domain. Involved in response to cytokinin and
meristem stem cell maintenance. Arr7 protein is stabilized by cytokinin.
Process: Cytokinin mediated signaling pathway (To et al. 2007; Hwang et al. 2002), response to cytokinin stimulus
(Kim et al. 2006) and stem cell maintenance (Leibfried et al. 2005).
AGI: AT1G19050. Pop. Ort.: POPTRDRAFT_824636 (ARR3) - estExt_fgenesh4_pg.C_LG_XV0454
transcription
regulator/
twocomponent
response regulator
(Ren et al.
2009; Lee et
al. 2008)
Gene
Summary
Type
ASA1
ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1: ASA1 encodes the alpha subunit of anthranilate synthase,
which catalyzes the rate-limiting step of tryptophan synthesis. ASA1 is induced by ethylene, and forms a link between
ethylene signaling and auxin synthesis in roots.
anthranilate
synthase
References
(Sun et al.
2009)
Process: Auxin biosynthetic process (Stepanova et al. 2005).
AGI: AT5G05730. Pop. Ort.: POPTRDRAFT_227100 (ASA1) - gw1.X.1797.1
ASB1
ANTHRANILATE SYNTHASE BETA SUBUNIT 1: Catalyzes the first step of tryptophan biosynthesis: Chorismate
L-Glutamine = Anthranilate Pyruvate L-Glutamate. Functions as a heterocomplex with anthranilate synthase alpha
subunit (ASA1 or ASA2).
anthranilate
synthase
(Stepanova
et al. 2005)
Process: Auxin biosynthetic process (Stepanova et al. 2005).
AGI: AT1G25220. Pop. Ort.: POPTRDRAFT_566399 (ASB1) - eugene3.00100957
ASB1-like
A
AGI: AT1G25155. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1
anthranilate
synthase
beta
subunit, putative
ASB1-like
B
AGI: AT1G24807. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1
anthranilate
synthase
beta
subunit, putative
ASB1-like
C
AGI: AT1G24909. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1
anthranilate
synthase
beta
subunit, putative
ASB1-like
D
AGI: AT1G25083. Pop. Ort.: POPTRDRAFT_419417 (ASB2) - gw1.VIII.845.1
anthranilate
synthase
beta
subunit, putative
ASB2
ANTHRANILATE SYNTHASE BETA SUBUNIT 2
anthranilate
synthase
beta
subunit, putative
AGI: AT5G57890. Pop. Ort.: POPTRDRAFT_566399 (ASB1) - eugene3.00100957
(Zhong et al.
1999)
Gene
Summary
Type
AT2G34590
AGI: AT2G34590. Pop. Ort.: POPTRDRAFT_668506 - grail3.0080008401
transketolase family
protein
AT3G25660
AGI: AT3G25660. Pop. Ort.: POPTRDRAFT_558478 - eugene3.00050093
glutamyltRNA(Gln)
amidotransferase,
putative
ATE1_ALPHA
Encodes the e1 alpha subunit of the pyruvate dehydrogenase complex (PDC)
oxidoreductase,
acting
on
the
aldehyde or oxo
group of donors,
disulfide
as
acceptor / pyruvate
dehydrogenase
(acetyl-transferring)
ATHB15/C
NA/ICU4
CORONA: Member of the III HD-Zip family. Critical for vascular development and negatively regulates vascular cell
differentiation.
AGI: AT1G59900. Pop. Ort.: POPTRDRAFT_657555 - grail3.0009040502
DNA binding /
transcription factor
Process: Meristem initiation (Prigge et al. 2005), organ morphogenesis and regulation of meristem growth (Green et al.
2005) and phloem or xylem histogenesis (Kim et al. 2005).
AGI: AT1G52150. Pop. Ort.: POPTRDRAFT_797557 (HB5) - fgenesh4_pm.C_LG_I000560
ATHB8
HOMEOBOX GENE 8: Member of the III HD-Zip family. Acting as a differentiation-promoting transcription factor
of the vascular meristems.
Process: Meristem initiation (Prigge et al. 2005), xylem development and positive regulation of cell differentiation and
cell proliferation (Baima et al. 2001) and response to auxin stimulus (Baima et al. 1995; Mattsson et al. 2003).
AGI: AT4G32880. Pop. Ort.: POPTRDRAFT_832118 (HB8) - estExt_fgenesh4_pm.C_LG_VI0713
DNA binding /
transcription factor
References
(Hawker and
Bowman
2004;
Baucher et
al. 2007;
Kim et al.
2005;
Ochando et
al. 2008)
(Hawker and
Bowman
2004;
Baucher et
al. 2007)
Gene
Summary
Type
ATIPT1
ISOPENTENYLTRANSFERASE 1: Encodes a putative adenylate isopentenyltransferase which catalyzes the
formation of isopentenyladenosine 5'-monophosphate (iPMP) from AMP and dimethylallylpyrophosphate (DMAPP).
Involved in cytokinin biosynthesis.
adenylate
dimethylallyltransfe
rase
References
(Kuderova et
al. 2008)
Process: Secondary growth: Increase in plant girth due to the activity of lateral meristems (vascular and cork cambium)
(Matsumoto-Kitano et al. 2008).
AGI: AT1G68460. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133
ATIPT14
AB061402 Arabidopsis thaliana AtIPT4 mRNA for cytokinin synthase.
Process: Cytokinin biosynthetic process (Miyawaki et al. 2006; Kakimoto 2001).
adenylate
dimethylallyltransfe
rase
(Kakimoto
2001; Li et
al. 2010)
AGI: AT4G24650. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133
ATIPT6
AB061404 Arabidopsis thaliana AtIPT6 mRNA for cytokinin synthase, complete cds
Process: Cytokinin biosynthetic process (Miyawaki et al. 2006).
AGI: AT1G25410. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133
ATIPT8
ATP/ADP ISOPENTENYLTRANSFERASES: Encodes cytokinin synthase.
Process: Cytokinin biosynthetic process (Miyawaki et al. 2006; Takei et al. 2001).
ATP binding /
adenylate
dimethylallyltransfe
rase/
tRNA
isopentenyltransfera
se
ATP/ADP
ISOPENTENYLTR
ANSFERASES
AGI: AT3G19160. Pop. Ort.: POPTRDRAFT_564538 - eugene3.00081133
ATPAO2
POLYAMINE OXIDASE 2
AGI: AT2G43020. Pop. Ort.: POPTRDRAFT_831582 - estExt_fgenesh4_pm.C_LG_V0482
ATR1
ARABIDOPSIS P450 REDUCTASE 1: Encodes a cyp450 reductase likely to be involved in phenylpropanoid
metabolism.
AGI: AT4G24520. POPTRDRAFT_818445 (ATR1) - estExt_fgenesh4_pg.C_LG_V0696
(Miyawaki et
al. 2006)
(Miyawaki et
al. 2006;
Takei et al.
2001)
amine
oxidase/
electron
carrier/
oxidoreductase
NADPHhemoprotein
reductase
(Celenza et
al. 2005;
Bender and
Fink 1998)
Gene
Summary
Type
ATR1-like
AGI: AT3G02280. Pop. Ort.: POPTRDRAFT_714013 (ATR3) - estExt_Genewise1_v1.C_LG_IV3209
flavodoxin
protein
ATR2
ARABIDOPSIS P450 REDUCTASE 2: Encodes NADPH-cytochrome P450 reductase that catalyzes the first oxidative
step of the phenylpropanoid general pathway.
NADPHhemoprotein
reductase
AGI: AT4G30210. Pop. Ort.: POPTRDRAFT_825890 - estExt_fgenesh4_pg.C_LG_XVIII0790
AUX1
AUXIN RESISTANT 1: Encodes an auxin influx transporter. AUX1 resides at the apical plasma membrane of
protophloem cells and at highly dynamic subpopulations of Golgi apparatus and endosomes in all cell types. AUX1
action in the lateral root cap and/or epidermal cells influences lateral root initiation and positioning.
Process: Auxin polar transport (Kramer and Bennett 2006), establishment of planar polarity (Fischer et al. 2006) and
positive gravitropism (Bennett et al. 1996).
AGI: AT2G38120. Pop. Ort.: POPTRDRAFT_653103 (PtrAUX1) - grail3.0023028402
BAM1
BARELY ANY MERISTEM 1: Encodes a CLAVATA1-related receptor kinase-like protein required for both shoot
and flower meristem function. Very similar to BAM2,with more than 85% a.a. identity. It has a broad expression
pattern and is involved in vascular strand development in the leaf, control of leaf shape, size and symmetry, male
gametophyte development and ovule specification and function. Anthers of double mutants (bam1bam2) appeared
abnormal at a very early stage and lack the endothecium, middle, and tapetum layers. Further analyses revealed that
cells interior to the epidermis (in anther tissue) acquire some characteristics of pollen mother cells (PMCs), suggesting
defects in cell fate specification. The pollen mother-like cells degenerate before the completion of meiosis, suggesting
that these cells are defective. In addition, the BAM1 expression pattern supports both an early role in promoting
somatic cell fates and a subsequent function in the PMCs.
Process: Regulation of meristem growth (DeYoung et al. 2006) and regulation of meristem structural organization
(Deyoung and Clark 2008).
AGI: AT5G65700. Pop. Ort.: POPTRDRAFT_717990 - estExt_Genewise1_v1.C_LG_VII0023
References
family
amino
acid
transmembrane
transporter/ auxin
binding / auxin
influx
transmembrane
transporter/
transporter
ATP binding /
kinase/
protein
serine/threonine
kinase
(Smolen et
al. 2002)
(KleineVehn et al.
2006; Belin
et al. 2009;
Carrier et al.
2008; De
Smet et al.
2007)
(Deyoung
and Clark
2008; Hord
et al. 2006)
Gene
Summary
Type
BAM2
BARELY ANY MERISTEM 2: Encodes a CLAVATA1-related receptor kinase-like protein required for both shoot
and flower meristem function. Very similar to BAM1, with more than 85% a.a. identity. It has a broad expression
pattern and is involved in vascular strand development in the leaf, control of leaf shape, size and symmetry, male
gametophyte development and ovule specification and function. Anthers of double mutants (bam1bam2) appeared
abnormal at a very early stage and lack the endothecium, middle, and tapetum layers. Further analyses revealed that
cells interior to the epidermis (in anther tissue) acquire some characteristics of pollen mother cells (PMCs), suggesting
defects in cell fate specification. The pollen mother-like cells degenerate before the completion of meiosis, suggesting
that these cells are defective. In addition, the BAM2 expression pattern supports both an early role in promoting
somatic cell fates and a subsequent function in the PMCs.
ATP binding /
protein binding /
protein
kinase/
protein
serine/threonine
References
(Deyoung
and Clark
2008; Hord
et al. 2006)
Process: Regulation of meristem growth (DeYoung et al. 2006) and regulation of meristem structural organization
(Deyoung and Clark 2008).
AGI: AT3G49670. Pop. Ort.: POPTRDRAFT_717990 - estExt_Genewise1_v1.C_LG_VII0023
BP/KNAT1
KNOTTED-LIKE FROM ARABIDOPSIS THALIANA: A member of class I knotted1-like homeobox gene family
(together with KNAT2). Similar to the knotted1 (kn1) homeobox gene of maize. Normally expressed in the peripheral
and rib zone of shoot apical meristem but not in the leaf primordia. It is also expressed in the fourth floral whorl, in the
region that would become style, particularly in the cell surrounding the transmitting tissue. No expression was detected
in the first three floral whorls. Expression is repressed by auxin and AS1 which results in the promotion of leaf fate.
transcription factor
(Baucher et
al. 2007;
Kanrar et al.
2006; Ragni
et al. 2008)
Process: Cell fate commitment (Venglat et al. 2002), cell fate specification (Lincoln et al. 1994) and xylem and phloem
pattern formation (Douglas and Riggs 2005).
AGI: AT4G08150. Pop. Ort.: POPTRDRAFT_710537 (KNOX) - estExt_Genewise1_v1.C_LG_II1820
BP/KNAT2
KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 2: A member of class I knotted1-like homeobox gene family
(together with KNAT1). Similar to the knotted1 (kn1) homeobox gene of maize. KNAT2 acts synergistically with
cytokinins and antagonistically with ethylene based on ectopic expression studies in different mutant backgrounds and
hormone treatments. In addition, KNAT2 is negatively regulated by AS and YABBY genes. KNAT2 is strongly
expressed in the shoot apex of seedlings, while in mature plants the gene is primarily expressed in flowers and
inflorescence stems.
Process: Cytokinin mediated signaling pathway (Hamant et al. 2002).
AGI: AT1G70510. Pop. Ort.: POPTRDRAFT_658310 - grail3.0036024801
transcription factor
(Ikezaki et
al. 2010;
Ragni et al.
2008)
Gene
Summary
Type
BP/KNAT6
Homeodomain transcription factor KNAT6, belonging to class I of KN transcription factor family (which also includes
KNAT1 and KNAT2). Expression is increased in as and bop1 leaf mutants.
DNA binding /
transcription
activator/
transcription factor
Process: Contributes to SAM maintenance and boundary establishment in the embryo via the SHOOT
MERISTEMLESS(STM)/CUP-SHAPED COTYLEDON (CUC) pathway (Belles-Boix et al. 2006).
References
(Ragni et al.
2008; BellesBoix et al.
2006)
AGI: AT1G23380. Pop. Ort.: POPTRDRAFT_658310 - grail3.0036024801
BRL1
BRI 1 LIKE: mutant has Altered vascular cell differentiation; LRR Receptor Kinase
kinase
(Baucher et
al. 2007)
AGI: AT1G55610. Pop. Ort.: POPTRDRAFT_844734 - e_gw1.I.6306.1
BRL2
BRI1-LIKE 2: Encodes a leucine rich repeat receptor kinase and associated with provascular/procambial cells. Similar
to BRI, brassinosteroid receptor protein.
Process: Auxin mediated signaling pathway and brassinosteroid mediated signaling pathway (Ceserani et al. 2009),
phloem transport and xylem and phloem pattern formation (Clay and Nelson 2002).
AGI: AT2G01950. Pop. Ort.: POPTRDRAFT_657034 - grail3.0010068301
BRL3
BRI1-LIKE 3: Similar to BRI, brassinosteroid receptor protein.
AGI: AT3G13380. Pop. Ort.: POPTRDRAFT_672125 - grail3.0140000501
CKI1
CYTOKININ-INDEPENDENT 1: Important regulators of vascular tissue development in Arabidopsis thaliana shoots.
Encodes a putative plasma membrane-bound hybrid histidine kinase and cytokinin sensor that is expressed within the
female gametophyte.
Process: Cytokinin mediated signaling pathway (Hwang et al. 2002).
AGI: AT2G47430. Pop. Ort.: POPTRDRAFT_898811 - e_gw1.XIV.2340.1
ATP binding /
protein
serine/threonine
kinase/
transmembrane
receptor
protein
serine/threonine
kinase
ATP binding /
protein binding /
protein
kinase/
protein
serine/threonine
kinase
protein
histidine
kinase/
twocomponent
response regulator
(Baucher et
al. 2007;
Ceserani et
al. 2009)
(CanoDelgado
al. 2004)
et
(Glover et al.
2008;
Hejatko et al.
2009)
Gene
Summary
Type
CLE40
CLAVATA3/ESR-RELATED 40: Member of a large family of putative ligands homologous to the Clavata3 gene.
Consists of a single exon.
protein binding /
receptor binding
References
(Fiers et al.
2005)
AGI: AT5G12990. Pop. Ort.: POPTRDRAFT_750766 - fgenesh4_pg.C_LG_I000369
CLE41
CLAVATA3/ESR-RELATED 41: Belongs to a large gene family, called CLE for CLAVATA3/ESR-related, encoding
small peptides with conserved carboxyl termini. The C-terminal 12 amino acid sequence of CLE41 is identical to that
of a dodeca peptide (TDIF, tracheary element differentiation inhibitory factor) isolated from Arabidopsis and functions
as a suppressor of plant stem cell differentiation. TDIF sequence is also identical to the C-terminal 12 amino acids of
CLE44 (AT4G13195). TDIF/CLE41/44/42 was shown to act as ligand for PXY.
protein binding /
receptor binding
(Hirakawa et
al. 2008;
Lehesranta et
al. 2009)
Process: Phloem or xylem histogenesis (Ito et al. 2006).
AGI: AT3G24770. Pop. Ort.: POPTRDRAFT_569594 - eugene3.00120247
CLE42
(Ito et al.
2006)
CLAVATA3/ESR-RELATED 42: Belongs to a large gene family, called CLE for CLAVATA3/ESR-related, encoding
small peptides with conserved carboxyl termini.
AGI: AT2G34925. Pop. Ort.: POPTRDRAFT_751056 - fgenesh4_pg.C_LG_I000659
CLE44
(Hirakawa et
al. 2008;
Lehesranta et
al. 2009)
CLAVATA3/ESR-RELATED 44: Belongs to a large gene family, called CLE for CLAVATA3/ESR-related, encoding
small peptides with conserved carboxyl termini. The C-terminal 12 amino acid sequence of CLE44 is identical to that
of a dodeca peptide (TDIF, tracheary element differentiation inhibitory factor) isolated from Arabidopsis and functions
as a suppressor of plant stem cell differentiation. TDIF sequence is also identical to the C-terminal 12 amino acids of
CLE41 (AT3G24770). TDIF/CLE41/44/42 was shown to act as ligand for PXY.
Process: Phloem or xylem histogenesis (Ito et al. 2006).
AGI: AT4G13195. Pop. Ort.: POPTRDRAFT_569594 - eugene3.00120247
CLE6
CLAVATA3/ESR-RELATED 6: Member of a large family of putative ligands homologous to the Clavata3 gene.
Consists of a single exon. Can replace CLV3 function in vivo.
AGI: AT2G31085. Pop. Ort.: POPTRDRAFT_574352 - eugene3.00190826
protein binding /
receptor binding
(Cock and
McCormick
2001)
Gene
Summary
Type
CLV1
CLAVATA 1: Putative receptor kinase with an extracellular leucine-rich domain. Controls shoot and floral meristem
size, and contributes to establish and maintain floral meristem identity. Negatively regulated by KAPP (kinaseassociated protein phosphatase) (Williams et al. 1997; Trotochaud et al. 1999). CLV3 peptide binds directly CLV1
ectodomain.
ATP binding /
kinase/
protein
serine/threonine
kinase/
receptor
signaling
protein
serine/threonine
kinase
Process: Cell differentiation (Williams et al. 1999) and regulation of meristem structural organization (Clark et al.
1997).
References
(Ogawa et al.
2008)
AGI: AT1G75820. Pop. Ort.: POPTRDRAFT_583546 - eugene3.15140001
CLV2
CLAVATA2: Receptor-like protein containing leucine-rich repeats. Regulates both meristem and organ development
in Arabidopsis.
Process: Anatomical structure morphogenesis, regulation of flower development and growth (Kayes and Clark 1998)
and meristem development (Wang et al. 2008).
protein binding /
receptor signaling
protein
(Wang et al.
2010)
AGI: AT1G65380. Pop. Ort.: POPTRDRAFT_596988 - eugene3.00870064
CLV3
CLAVATA3: One of the three CLAVATA genes controlling the size of the shoot apical meristem (SAM) in
Arabidopsis. Belongs to a large gene family called CLE for CLAVATA3/ESR-related. Encodes a stem cell-specific
protein CLV3 presumed to be a precursor of a secreted peptide hormone. The deduced ORF encodes a 96-amino acid
protein with an 18-amino acid N-terminal signal peptide. The functional form of CLV3 (MCLV3) is a
posttranscriptionally modified 12-amino acid peptide, in which two of the three prolines were modified to
hydroxyproline. CLV3 binds the ectodomain of the CLAVATA1 (CLV1) receptor-kinase. Regulates shoot and floral
meristem development. Required for CLAVATA1 receptor-like kinase assembly into a signaling complex that includes
KAPP and a Rho-related protein. It restricts its own domain of expression, the central zone (CZ) of the shoot apical
meristem (SAM), by preventing differentiation of peripheral zone cells, which surround the CZ, into CZ cells and
restricts overall SAM size by a separate, long-range effect on cell division rate. CLE domain of CLV3 is sufficient for
function.
Process: Cell differentiation (Brand et al. 2000), meristem development (Muller et al. 2006) and regulation of meristem
structural organization (Kondo et al. 2006).
AGI: AT2G27250. Pop. Ort.: POPTRDRAFT_821595 - estExt_fgenesh4_pg.C_LG_IX1351
kinase
activator/
protein binding /
receptor binding
(Ogawa et al.
2008; Fiers
et al. 2005;
Reddy and
Meyerowitz
2005; Muller
et al. 2006;
Kondo et al.
2006)
Gene
Summary
Type
References
COV1
CONTINUOUS VASCULAR RING: Encodes an integral membrane protein of unknown function, highly conserved
between plants and bacteria; is likely to be involved in a mechanism that negatively regulates the differentiation of
vascular tissue in the stem. Mutants display a dramatic increase in vascular tissue development in the stem in place of
the interfascicular region that normally separates the vascular bundles.
membrane protein
(Baucher et
al. 2007)
Process: Stem vascular tissue pattern formation and auxin mediated signaling pathway (Parker et al. 2003).
AGI: AT2G20120. Pop. Ort.: POPTRDRAFT_669317 - grail3.0020005701
CYP79B2
CYTOCHROME P450 79B2: Belongs to cytochrome P450 and is involved in tryptophan metabolism. Converts Trp to
indo-3-acetaldoxime (IAOx), a precursor to IAA and indole glucosinolates.
Process: Indoleacetic acid biosynthetic process (Ljung et al. 2005; Zhao et al. 2002).
AGI: AT4G39950. Pop. Ort.: POPTRDRAFT_555694 (CYP79D8) - eugene3.00040407
CYP79B3
CYTOCHROME P450 79B3: Encodes a cytochrome P450. Involved in tryptophan metabolism. Converts Trp to
indole-3-acetaldoxime (IAOx), a precursor to IAA and indole glucosinolates.
Process: Indoleacetic acid biosynthetic process (Ljung et al. 2005; Zhao et al. 2002).
AGI: AT2G22330. Pop. Ort.: POPTRDRAFT_584081 (CYP79D6v2) - eugene3.15850001
CYP83A1
CYTOCHROME P450 83A1: Encodes a cytochrome p450 enzyme that catalyzes the initial conversion of aldoximes to
thiohydroximates in the synthesis of glucosinolates not derived from tryptophan. Also has a role in auxin homeostasis.
AGI: AT4G13770. Pop. Ort.: POPTRDRAFT_346721 (CYP83F1) - fgenesh1_pg.C_LG_II000227
electron
carrier/
heme binding / iron
ion
binding
/
monooxygenase/
oxygen binding
electron
carrier/
heme binding / iron
ion
binding
/
monooxygenase/
oxygen binding
oxidoreductase,
acting on paired
donors,
with
incorporation
or
reduction
of
molecular oxygen,
NADH or NADPH
as one donor, and
incorporation
of
one atom of oxygen
/ oxygen binding
(Mikkelsen
et al. 2009)
(Mikkelsen
et al. 2009)
(Naur et al.
2003; Bak
and
Feyereisen
2001)
Gene
Summary
Type
CYP83B1
SUR2
CYTOCHROME P450 MONOOXYGENASE 83B1: Encodes an oxime-metabolizing enzyme in the biosynthetic
pathway of glucosinolates. Is required for phytochrome signal transduction in red light. Mutation confers auxin
overproduction.
oxidoreductase,
acting on paired
donors,
with
incorporation
or
reduction
of
molecular oxygen,
NADH or NADPH
as one donor, and
incorporation
of
one atom of oxygen
/ oxygen binding
AGI: AT4G31500. Pop. Ort.: POPTRDRAFT_346721 (CYP83F1) - fgenesh1_pg.C_LG_II000227
Dof5.6/HC
A2
Preferentially expressed in the vasculature of all the organs, particularly in the cambium, phloem, and interfascicular
parenchyma cells of inflorescence stems.
Process: Phloem or xylem histogenesis and procambium histogenesis (Guo et al. 2009).
Dof-type
zinc
finger
domaincontaining protein
References
(Naur et al.
2003; Bak
and
Feyereisen
2001)
(Guo et al.
2009)
AGI: AT5G62940. Pop. Ort.: POPTRDRAFT_570095 - eugene3.00120748
ELF5A-1
EUKARYOTIC ELONGATION FACTOR 5A-1: Xylem abundance. In mammalian cells it functions as a shuttle
protein that translocates mRNA from the nucleus to cytoplasmic ribosomes. Overexpression results in an increase in
both primary and secondary xylem formation. In RNAi suppressed lines, xylem formation is reduced.
translation initiation
factor
Process: Xylem development (Liu et al. 2008).
AGI: AT1G13950. Pop. Ort.: POPTRDRAFT_717121 - estExt_Genewise1_v1.C_LG_VI0968
F11A3.11
AGI: AT2G20340. Pop. Ort.: POPTRDRAFT_816969 - estExt_fgenesh4_pg.C_LG_II2533
tyrosine
decarboxylase,
putative
F17M19.7
AGI: AT1G71920. Pop. Ort.: POPTRDRAFT_287731 - gw1.41.216.1
histidinolphosphate
aminotransferase,
putative
(Liu et al.
2008)
Gene
Summary
Type
F23N19.18
AGI: AT1G62810. Pop. Ort.: POPTRDRAFT_744008 - estExt_Genewise1_v1.C_1270098
copper
amine
oxidase, putative
F4I10.4
AGI: AT4G33070. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442
pyruvate
decarboxylase,
putative
GH3.6/DFL
1
DWARF IN LIGHT 1: Encodes an IAA-amido synthase that conjugates Ala, Asp, Phe, and Trp to auxin. Lines
overexpressing this gene accumulate IAA-ASP and are hypersensitive to several auxins. Identified as a dominant
mutation that displays shorter hypocotyls in light grown plants when compared to wild type siblings. Protein is similar
to auxin inducible gene from pea (GH3).
indole-3-acetic acid
amido synthetase
References
(Nakazawa
et al. 2001)
Process: Auxin homeostasis and response to auxin stimulus (Staswick et al. 2005) and auxin mediated signaling
pathway (Nakazawa et al. 2001).
AGI: AT5G54510. Pop. Ort.: POPTRDRAFT_571444 (GH3-6) - eugene3.00130808
GN
GNOM: Encodes a GDP/GTP exchange factor for small G-proteins of the ADP ribosylation factor (RAF) class, and as
regulator of intracellular trafficking. Homologous to Sec7p and YEC2 from yeast. Involved in the specification of
apical-basal pattern formation. Essential for cell division, expansion and adhesion. It appears that heteotypic binding
between the DCB and C-terminal domains of two GNOM proteins is required for membrane association, however,
GNOM appears to exist predominantly as a heterodimer formed through DCB-DCB interactions.
GTP:GDP
antiporter/ protein
homodimerization
(Helariutta
and Bhalerao
2003)
Process: Basipetal auxin transport (Kleine-Vehn et al. 2008), cytokinesis by cell plate formation (Shevell et al. 1994),
establishment of planar polarity (Fischer et al. 2006) and phloem or xylem histogenesis (Koizumi et al. 2000).
AGI: AT1G13980. Pop. Ort.: POPTRDRAFT_578433 - eugene3.00180657
HPA1
HISTIDINOL PHOSPHATE AMINOTRANSFERASE 1: Encodes histidinol-phosphate aminotransferase that
catalyzes the eighth step in histidine biosynthesis. Loss of function mutations are embryo lethal.
AGI: AT5G10330. Pop. Ort.: POPTRDRAFT_287731 - gw1.41.216.1
IAGLU
INDOLE-3-ACETATE BETA-D-GLUCOSYLTRANSFERASE
AGI: AT4G15550. Pop. Ort.: POPTRDRAFT_645347 - grail3.0021016401
histidinolphosphate
transaminase
UDPglycosyltransferase/
transferase,
transferring
glycosyl groups
(Mo et al.
2006)
Gene
Summary
Type
IAR1
IAA-ALANINE RESISTANT 1: member of IAA-alanine resistance protein 1
metal
ion
transmembrane
transporter
AGI: AT1G68100. Pop. Ort.: POPTRDRAFT_720768 - estExt_Genewise1_v1.C_LG_VIII2016
IAR3
IAA-ALANINE RESISTANT 3: encodes a member of the six Arabidopsis IAA-amino acid conjugate hydrolase
subfamily and conjugates and conjugates IAA-Ala in vitro. Gene is expressed most strongly in roots, stems, and
flowers.
References
IAA-Ala conjugate
hydrolase/
metallopeptidase
AGI: AT1G51760. Pop. Ort.: POPTRDRAFT_711792 (ILL11) - estExt_Genewise1_v1.C_LG_III0403
IAR4
IAA-ALANINE RESISTANT 4: Arabidopsis thaliana pyruvate dehydrogenase E1a-like subunit. 81% identical to a
previously characterized Arabidopsis mitochondrial PDH E1a-subunit, AT1G59900.
AGI: AT1G24180. Pop. Ort.: POPTRDRAFT_1090032 - estExt_Genewise1Plus.C_LG_X1893
oxidoreductase,
acting
on
the
aldehyde or oxo
group of donors,
disulfide
as
acceptor / pyruvate
dehydrogenase
(acetyl-transferring)
IGS-like
AGI: AT2G04400. Pop. Ort.: POPTRDRAFT_834976 - estExt_fgenesh4_pm.C_LG_XIV0483
indole-3-glycerol
phosphate synthase
(IGPS)
ILL5
Encodes a member of the six Arabidopsis IAA-amino acid conjugate hydrolase subfamily and conjugates and is very
similar to IAR3.
IAA-amino
acid
conjugate
hydrolase/
metallopeptidase
AGI: AT1G51780. Pop. Ort.: POPTRDRAFT_711792 (ILL11) - estExt_Genewise1_v1.C_LG_III0403
ILR1
IAA-LEUCINE RESISTANT 1: Hydrolyzes amino acid conjugates of the plant growth regulator indole-3-acetic acid
(IAA), including IAA-Leu and IAA-Phe. Uses Mg and Co ions as cofactors.
Process: Auxin metabolic process (Bartel and Fink 1995).
AGI: AT3G02875. Pop. Ort.: POPTRDRAFT_763045 (ILL1) - fgenesh4_pg.C_LG_VI001355
IAA-Leu conjugate
hydrolase/ IAA-Phe
conjugate
hydrolase/
metallopeptidase
(Quint et al.
2009)
(Bartel and
Fink 1995)
Gene
Summary
Type
IRX3
IRREGULAR XYLEM 3: Encodes a xylem-specific cellulose synthase that is phosphorylated on one or more serine
residues (on either S185 or one of S180 or S181).
cellulose synthase
Process: Cellulose synthase activity (Taylor et al. 1999).
References
(Atanassov
et al. 2009;
Zhong et al.
2006b)
AGI: AT5G17420. Pop. Ort.: POPTRDRAFT_717644 - estExt_Genewise1_v1.C_LG_VI2188
KAN1
KANADI: GARP family member. Encodes a KANADI protein (KAN) that regulates organ polarity in Arabidopsis.
KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclear-localized protein in the GARP
family of putative transcription factors. Together with KAN2, this gene appears to be involved in the development of
the carpel and the outer integument of the ovule. Along with KAN2 and KAN4, KAN1 appears to be required for
proper regulation of PIN1 in early embryogenesis.
transcription factor
(Baucher et
al. 2007;
Pekker et al.
2005; Wu et
al. 2008)
Process: Abaxial cell fate specification (Pekker et al. 2005), adaxial/abaxial axis specification (Wu et al. 2008),
polarity specification of adaxial/abaxial axis (Ha et al. 2007), radial pattern formation and xylem and phloem pattern
formation (Emery et al. 2003).
AGI: AT5G16560. Pop. Ort.: POPTRDRAFT_755990 - fgenesh4_pg.C_LG_II002170
KAN2
KANADI 2: MYB family transcription factor member. Encodes a KANADI protein (KAN) that regulates organ
polarity in Arabidopsis. KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclearlocalized protein in the GARP family of putative transcription factors. Together with KAN2, this gene appears to be
involved in the development of the carpel and the outer integument of the ovule. Along with KAN2 and KAN4, KAN1
appears to be required for proper regulation of PIN1 in early embryogenesis.
DNA binding /
transcription factor
(Baucher et
al.
2007;
Pekker et al.
2005; Wu et
al. 2008)
DNA binding /
transcription factor
(Baucher et
al.
2007;
Pekker et al.
2005; Wu et
al. 2008)
Process: Polarity specification of adaxial/abaxial axis (Ha et al. 2007).
AGI: AT1G32240. Pop. Ort.: POPTRDRAFT_590054 - eugene3.00290237
KAN3
KANADI 3: GARP family member. Encodes a KANADI protein (KAN) that regulates organ polarity in Arabidopsis.
KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclear-localized protein in the GARP
family of putative transcription factors. Together with KAN2, this gene appears to be involved in the development of
the carpel and the outer integument of the ovule. Along with KAN2 and KAN4, KAN1 appears to be required for
proper regulation of PIN1 in early embryogenesis.
AGI: AT4G17695. Pop. Ort.: POPTRDRAFT_590054 - eugene3.00290237
Gene
Summary
Type
KAN4/ATS
ABERRANT TESTA SHAPE: Encodes a member of the KANADI family of putative transcription factors. Involved in
integument formation during ovule development and expressed at the boundary between the inner and outer
integuments. It is essential for directing laminar growth of the inner integument. Along with KAN1 and KAN2, KAN4
is involved in proper localization of PIN1 in early embryogenesis.
DNA binding /
transcription factor
References
(McAbee et
al. 2006)
Process: Integument development (Kelley et al. 2009) and ovule development (Leon-Kloosterziel et al. 1994).
AGI: AT5G42630. Pop. Ort.: POPTRDRAFT_917686 - e_gw1.40.547.1
KAPP
KINASE ASSOCIATED PROTEIN PHOSPHATASE: kinase associated protein phosphatase composed of three
domains: an amino-terminal signal anchor, a kinase interaction (KI) domain, and a type 2C protein phosphatase
catalytic region.
Process: Regulation of meristem structural organization (Stone et al. 1998) and negative regulator of CLV1 signaling
(Trotochaud et al. 1999).
phosphoprotein
phosphatase/
protein
kinase
binding / protein
serine/threonine
phosphatase
(Williams et
al. 1997)
AGI: AT5G19280. Pop. Ort.: POPTRDRAFT_805045 - fgenesh4_pm.C_LG_X000351
LAS
Lateral Suppressor: GRAS transcription factor family member. It is involved in the initiation of axillary meristems
during both the vegetative and reproductive growth phases and functions upstream of REV and AXR1 in the regulation
of shoot branching.
transcription factor
(Raman et al.
2008)
Process: Regulation of transcription (Riechmann et al. 2000) and secondary shoot formation (Greb et al. 2003).
AGI: AT1G55580. Pop. Ort.: POPTRDRAFT_550683 (GRAS44) - eugene3.00013124
LAX3
LIKE AUX1 3: Encodes an auxin influx carrier LAX3 (Like Aux1) that promotes lateral root emergence. Auxininduced expression of LAX3 in turn induces a selection of cell-wall-remodelling enzymes, which are likely to promote
cell separation in advance of developing lateral root primordia.
Process: Auxin polar transport (Swarup et al. 2008).
AGI: AT1G77690. Pop. Ort.: POPTRDRAFT_643656 (PtrAUX8) - grail3.0003074001
LCV1
LIKE COV 1
AGI: AT2G20130. Pop. Ort.: POPTRDRAFT_669317 - grail3.0020005701
amino
acid
transmembrane
transporter/ auxin
influx
transmembrane
transporter/
transporter
(Vandenbuss
che et al.
2010)
Gene
Summary
Type
MAB1
MACCI-BOU
catalytic/ pyruvate
dehydrogenase
(acetyl-transferring)
AGI: AT5G50850. Pop. Ort.: POPTRDRAFT_829373 - estExt_fgenesh4_pm.C_LG_I0194
MAX1/CYP
711A1
Encodes a protein with similarity to thromboxane-A synthase, member of the CYP711A cytochrome P450 family.
MAX1 is a specific repressor of vegetative axillary buds generated by the axillary meristem. Expressed in vascular
traces in the rosette stem and axillary buds throughout plant development. Mutants have increased axillary branches.
Along with MAX3,4 thought to mediate control of shoot branching via synthesis of a signal molecule which is
transported over long distance mediated by MAX2. cDNA supports the existence of the longer transcript predicted for
this locus, no cDNA isolated for shorter transcript. MAX1 downregulates 11 genes involved in flavonoid pathway
(CHS, CHI, F3H, F3'H, FLS, DFR, ANS, UFGT, RT, AAC and GST).
electron
carrier/
heme binding / iron
ion
binding
/
monooxygenase/
oxygen binding
References
(Lazar and
Goodman
2006)
Process: Auxin polar transport (Bennett et al. 2006), positive regulation of flavonoid biosynthetic process (Lazar and
Goodman 2006), regulation of meristem structural organization (Stirnberg et al. 2002) and secondary shoot formation
(Booker et al. 2005).
AGI: AT2G26170. Pop. Ort.: POPTRDRAFT_352660 (CYP711A8) - fgenesh1_pg.C_LG_VI001581
MAX2
MORE AXILLARY BRANCHES 2: ORE9 family member. The mutations at MAX2 cause increased hypocotyl and
petiole elongation in light-grown seedlings. Positional cloning identifies MAX2 as a member of the F-box leucine-rich
repeat family of proteins. MAX2 is identical to ORE9, a proposed regulator of leaf senescence. Involved in positive
regulation of light responses.
ubiquitin-protein
ligase
(Stirnberg et
al. 2007;
Shen et al.
2007)
Process: Auxin polar transport (Bennett et al. 2006), regulation of meristem structural organization (Stirnberg et al.
2002) and shoot morphogenesis (Stirnberg et al. 2007).
AGI: AT2G42620. Pop. Ort.: POPTRDRAFT_1099491 - estExt_Genewise1Plus.C_LG_XIV2555
MAX3/CC
D7
CAROTENOID CLEAVAGE DIOXYGENASE 7: MAX3 encodes a plastidic dioxygenase that can cleave multiple
carotenoids.
AGI: AT2G44990. Pop. Ort.: POPTRDRAFT_781295 - fgenesh4_pg.C_scaffold_40000045
CAROTENOID
CLEAVAGE
DIOXYGENASE 7
(Schwartz et
al. 2004; Zou
et al. 2006;
Booker et al.
2004)
Gene
Summary
Type
MAX4/CC
D8
CAROTENOID CLEAVAGE DIOXYGENASE 8: Encodes a protein with similarity to carotenoid cleaving
deoxygenases, the enzymes that cleave beta-carotene. Involved in the production of a graft transmissable signal to
suppress axillary branching. Protein is localized to chloroplast stroma and expressed primarily in root tip. Mutants in
the gene exhibit increased shoot branching, and light-dependent defects in hook opening and hypocotyl/root
elongation. Only upregulated by auxin in the root and hypocotyl, and this is not required for the inhibition of shoot
branching.
oxidoreductase,
acting on single
donors
with
incorporation
of
molecular oxygen,
incorporation
of
two
atoms
of
oxygen
Process: Auxin metabolic process (Auldridge et al. 2006), auxin polar transport (Bennett et al. 2006), response to auxin
stimulus (Sorefan et al. 2003) and secondary shoot formation (Auldridge et al. 2006; Sorefan et al. 2003).
References
(Schwartz et
al. 2004;
Alder et al.
2008)
AGI: AT4G32810. Pop. Ort.: POPTRDRAFT_561749 - eugene3.00061708
miR156A
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
misc_RNA
(Martin et al.
2010; Wu et
al. 2009)
AGI: AT2G25095. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_769294 fgenesh4_pg.C_LG_X000784,
POPTRDRAFT_793900
fgenesh4_pg.C_scaffold_9189000001,
POPTRDRAFT_656548 - grail3.0010026801, POPTRDRAFT_733659 - estExt_Genewise1_v1.C_LG_XV2187,
POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_769914 - fgenesh4_pg.C_LG_X001404
miR156B
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
misc_RNA
(Martin et al.
2010; Wu et
al. 2009)
AGI: AT4G30972. Pop. Ort.: POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_793900 fgenesh4_pg.C_scaffold_9189000001
miR156C
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
AGI: AT4G31877. Pop. Ort.: POPTRDRAFT_769914 - fgenesh4_pg.C_LG_X001404, POPTRDRAFT_656548 grail3.0010026801, POPTRDRAFT_754682 - fgenesh4_pg.C_LG_II000862, POPTRDRAFT_646571 grail3.0018026401
misc_RNA
(Martin et al.
2010; Wu et
al. 2009)
Gene
Summary
Type
miR156D
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
misc_RNA
References
(Martin et al.
2010; Wu et
al. 2009)
AGI: AT5G10945. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_769914 fgenesh4_pg.C_LG_X001404, POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_733659 estExt_Genewise1_v1.C_LG_XV2187, POPTRDRAFT_656548 - grail3.0010026801, POPTRDRAFT_793900 fgenesh4_pg.C_scaffold_9189000001
miR156E
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
AGI: AT5G11977. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_769914
fgenesh4_pg.C_LG_X001404, POPTRDRAFT_755123 - fgenesh4_pg.C_LG_II001303, POPTRDRAFT_575458
eugene3.00150853, POPTRDRAFT_733659 - estExt_Genewise1_v1.C_LG_XV2187, POPTRDRAFT_656548
grail3.0010026801, POPTRDRAFT_770592 - fgenesh4_pg.C_LG_X002082, POPTRDRAFT_793900
fgenesh4_pg.C_scaffold_9189000001
miR156F
misc_RNA
(Martin et al.
2010; Wu et
al. 2009)
-
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
misc_RNA
(Martin et al.
2010; Wu et
al. 2009)
AGI: AT5G26147. Pop. Ort.: POPTRDRAFT_576281 - eugene3.00160416, POPTRDRAFT_947685 e_gw1.9962.5.1, POPTRDRAFT_813446 - fgenesh4_pm.C_scaffold_57000049, POPTRDRAFT_769914 fgenesh4_pg.C_LG_X001404, POPTRDRAFT_764848 - fgenesh4_pg.C_LG_VII001193, POPTRDRAFT_755123 fgenesh4_pg.C_LG_II001303,
POPTRDRAFT_733659
estExt_Genewise1_v1.C_LG_XV2187,
POPTRDRAFT_656548 - grail3.0010026801, POPTRDRAFT_793900 - fgenesh4_pg.C_scaffold_9189000001
miR156G
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
misc_RNA
(Martin et al.
2010; Wu et
al. 2009)
AGI: AT2G19425. Pop. Ort.: POPTRDRAFT_1117116 - estExt_Genewise1Plus.C_1520155
miR156H
Encodes a microRNA that targets several SPL family members, including SPL3,4, and 5. By regulating the expression
of SPL3 (and probably also SPL4 and SPL5), this microRNA regulates vegetative phase change.
AGI: AT5G55835. Pop. Ort.: POPTRDRAFT_576281
estExt_Genewise1_v1.C_LG_XV2187
-
eugene3.00160416,
POPTRDRAFT_733659
-
misc_RNA
(Martin et al.
2010; Wu et
al. 2009)
Gene
Summary
Type
miR165A
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
AGI: AT1G01183. Pop. Ort.: POPTRDRAFT_778882 (HB7) - fgenesh4_pg.C_LG_XVIII000250,
POPTRDRAFT_832118 (HB8) - estExt_fgenesh4_pm.C_LG_VI0713, POPTRDRAFT_292259 - gw1.6326.1.1
miR165B
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
AGI: AT4G00885. Pop. Ort.: POPTRDRAFT_778882 (HB7) - fgenesh4_pg.C_LG_XVIII000250,
POPTRDRAFT_832118 (HB8) - estExt_fgenesh4_pm.C_LG_VI0713, POPTRDRAFT_292259 - gw1.6326.1.1
miR166A
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
AGI: AT2G46685. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486
miR166B
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
AGI: AT3G61897. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486
miR166C
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
AGI: AT5G08712. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486
miR166D
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
AGI: AT5G08717. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486
miR166E
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
AGI: AT5G41905. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486
misc_RNA
References
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
Gene
Summary
Type
miR166F
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
AGI: AT5G43603. Pop. Ort.: POPTRDRAFT_768574 - fgenesh4_pg.C_LG_X000064, POPTRDRAFT_763035 fgenesh4_pg.C_LG_VI001345
miR166G
Dominant gain of function alleles have enlarged meristems, fasciated stems and radialized leaves. During early embryo
development expression is reciprocal to target mRNAs but then changes to overlapping expression with targets.
Regulation of vascular development in inflorescence stems, that targets several III HD-Zip family members including
PHV, PHB, REV, ATHB8, and ATHB15/CNA/ICU4.
misc_RNA
References
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
(Kim et al.
2005;
Mallory et al.
2004; Yao et
al. 2009)
AGI: AT5G63715. Pop. Ort.: POPTRDRAFT_562548 - eugene3.00070486
miR172A
Encodes a microRNA that targets several genes containing AP2 domains including AP2.
misc_RNA
AGI: AT2G28056. Pop. Ort.: POPTRDRAFT_743690 - estExt_Genewise1_v1.C_1230150
miR172B
Encodes a microRNA that targets several genes containing AP2 domains including AP2.
misc_RNA
AGI: AT5G04275. Pop. Ort.: POPTRDRAFT_565769 (DHQD4) - eugene3.00100327, POPTRDRAFT_820288
(RAP3) - estExt_fgenesh4_pg.C_LG_VIII0359, POPTRDRAFT_770475 (RAP4) - fgenesh4_pg.C_LG_X001965,
POPTRDRAFT_575387 - eugene3.00150782
MP
MONOPTEROS: Encodes a transcription factor (auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5))
mediating embryo axis formation and vascular development. Similar to AUXIN RESPONSIVE FACTOR 1 (ARF1)
shown to bind to auxin responsive elements (AREs), and to the maize transcriptional activator VIVIPAROUS 1 (VP1).
In situ hybridization shows expression in provascular tissue of embryos, the emerging shoot primordia, then is
restricted to provascular tissue, and in the root central vascular cylinder.
Process: meristem development and root development (Vidaurre et al. 2007), response to auxin stimulus (Ouellet et al.
2001), xylem and phloem pattern formation and longitudinal axis specification (Przemeck et al. 1996).
AGI: AT1G19850. Pop. Ort.: POPTRDRAFT_652033 - grail3.0002064402
transcription factor
(Lee et al.
2010; Held et
al. 2008; Wu
et al. 2009)
(Lee et al.
2010; Held et
al. 2008; Wu
et al. 2009)
(Johnson and
Douglas
2007;
Wenzel et al.
2007)
Gene
Summary
Type
References
NIT1
NITRILASE 1: Mutants are resistant to indole-3-acetonitrile (IAN). NIT1 catalyzes the terminal activation step in
indole-acetic acid biosynthesis. Predominantly expressed isoform of nitrilase isoenzyme family. Aggregation of NIT1
in cells directly abutting wound sites is one of the earliest events associated with wound and herbicide-induced cell
death. The protein undergoes thiolation following treatment with the oxidant tert-butylhydroperoxide. It is also
involved in the conversion of IAN to IAM (indole-3-acetamide) and other non-auxin-related metabolic processes.
indole-3acetonitrile
nitrilase/ indole-3acetonitrile nitrile
hydratase/ nitrilase
(Vorwerk et
al. 2001;
Hillebrand et
al. 1998;
Normanly et
al. 1997)
Process: Indoleacetic acid biosynthetic process (Muller et al. 1998).
AGI: AT3G44310. Pop. Ort.: POPTRDRAFT_782522 (NIT1) - fgenesh4_pg.C_scaffold_66000137
NIT2
NITRILASE 2: Encodes an enzyme that catalyzes the hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid
(IAA) (nitrile aminohydrolase, EC 3.5.5.1) and IAN to indole-3-acetamide (IAM) at lower levels. Mutants have
reduced sensitivity to IAN and are sensitive to IAA. This enzyme likely participates in other non-auxin-related
metabolic pathways.
Process: Indoleacetic acid biosynthetic process (Muller et al. 1998).
indole-3acetonitrile
nitrilase/ indole-3acetonitrile nitrile
hydratase/ nitrilase
(Vorwerk et
al. 2001;
Hillebrand et
al. 1998)
AGI: AT3G44300. Pop. Ort.: POPTRDRAFT_782522 (NIT1) - fgenesh4_pg.C_scaffold_66000137
NIT4
NITRILASE 4: encodes a nitrilase isomer. The purified enzyme shows a strong substrate specificity for beta-cyano-Lalanine, a intermediate product of the cyanide detoxification pathway.
AGI: AT5G22300. Pop. Ort.: POPTRDRAFT_782522 (NIT1) - fgenesh4_pg.C_scaffold_66000137
PAI1
PHOSPHORIBOSYLANTHRANILATE ISOMERASE 1: Encodes phosphoribosylanthranilate isomerase which
catalyzes the third step of the tryptophan biosynthetic pathway. Member of gene family.
3-cyanoalanine
hydratase/
cyanoalanine
nitrilase/ indole-3acetonitrile
nitrilase/ nitrilase/
nitrile hydratase
phosphoribosylanth
ranilate isomerase
(Piotrowski
et al. 2001)
(Li et al.
1995)
AGI: AT1G07780. Pop. Ort.: POPTRDRAFT_564037 - eugene3.00080632
PAI2
PHOSPHORIBOSYLANTHRANILATE ISOMERASE 2: Encodes phosphoribosylanthranilate isomerase which
catalyzes the third step in the tryptophan biosynthetic pathway.
AGI: AT5G05590. Pop. Ort.: POPTRDRAFT_564037 - eugene3.00080632
phosphoribosylanth
ranilate isomerase
(Li et al.
1995)
Gene
Summary
Type
PAI3
PHOSPHORIBOSYLANTHRANILATE ISOMERASE 3: Encodes phosphoribosylanthranilate isomerase which
catalyzes the third step in tryptophan biosynthesis.
phosphoribosylanth
ranilate isomerase
References
(Li et al.
1995)
AGI: AT1G29410. Pop. Ort.: POPTRDRAFT_564037 - eugene3.00080632
PAT1/TRP1
TRYPTOPHAN BIOSYNTHESIS 1: Encodes the tryptophan biosynthetic enzyme phosphoribosylanthranilate
transferase (PAT1, called trpD in bacteria). Converts anthranilate and phosphoribosylpyrophosphate into
phosphoribosylanthranilate and inorganic pyrophosphate.
anthranilate
phosphoribosyltrans
ferase
(Rose et al.
1997)
AGI: AT5G17990. Pop. Ort.: POPTRDRAFT_423398 - gw1.XII.1858.1
PDC2
PYRUVATE DECARBOXYLASE-2
AGI: AT5G54960. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442
PDC3
PYRUVATE DECARBOXYLASE-3
AGI: AT5G01330. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442
PDHE1_ALPHA
PYRUVATE DEHYDROGENASE E1 ALPHA
AGI: AT1G01090. Pop. Ort.: POPTRDRAFT_755473 - grail3.0080008401
carboxy-lyase/
catalytic/
magnesium
ion
binding / pyruvate
decarboxylase/
thiamin
pyrophosphate
binding
carboxy-lyase/
catalytic/
magnesium
ion
binding / pyruvate
decarboxylase/
thiamin
pyrophosphate
binding
/
transferase
pyruvate
dehydrogenase
(acetyl-transferring)
(Klok et al.
2002)
Gene
Summary
Type
PDHE1_BETA
PYRUVATE DEHYDROGENASE E1 BETA: Encodes a putative plastid pyruvate dehydrogenase E1 beta subunit
that is distinct from the mitochondrial pyruvate dehydrogenase E1 beta subunit.
pyruvate
dehydrogenase
(acetyl-transferring)
AGI: AT1G30120. Pop. Ort.: POPTRDRAFT_668506 - fgenesh4_pg.C_LG_II001653
PHB
PHABULOSA: Member of the III HD-Zip family. Dominant PHB mutations cause transformation of abaxial leaf fates
into adaxial leaf fates. Has overlapping functions with PHAVOLUTA, REVOLUTA and CORONA.
DNA binding /
transcription factor
Process: Adaxial/abaxial pattern formation (McConnell and Barton 1998), meristem initiation, polarity specification of
adaxial/abaxial axis and primary shoot apical meristem specification (Prigge et al. 2005).
AGI: AT2G34710. Pop. Ort.: POPTRDRAFT_815792 (HB4) - estExt_fgenesh4_pg.C_LG_I2905
PHV
PHAVOLUTA: Member of the III HD-Zip family. Dominant PHV mutations cause transformation of abaxial leaf fates
into adaxial leaf fates. Has overlapping functions with PHABULOSA, REVOLUTA and CORONA/ATHB15 in
patterning the apical portion of the embryo.
DNA binding /
protein binding /
transcription factor
Process: Adaxial/abaxial axis specification (McConnell et al. 2001), meristem initiation, polarity specification of
adaxial/abaxial axis and primary shoot apical meristem specification (Prigge et al. 2005).
AGI: AT1G30490. Pop. Ort.: POPTRDRAFT_815792 (HB4) - estExt_fgenesh4_pg.C_LG_I2905
PIN1
PIN-FORMED 1: Encodes an auxin efflux carrier involved in shoot and root development. It is involved in the
maintenance of embryonic auxin gradients. Loss of function severely affects organ initiation, pin1 mutants are
characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked
inflorescence stem. PIN1 is involved in the determination of leaf shape by actively promoting development of leaf
margin serrations. In roots, the protein mainly resides at the basal end of the vascular cells, but weak signals can be
detected in the epidermis and the cortex. Expression levels and polarity of this auxin efflux carrier change during
primordium development suggesting that cycles of auxin build-up and depletion accompany, and may direct, different
stages of primordium development. PIN1 action on plant development does not strictly require function of PGP1 and
PGP19 proteins.
Process: Auxin polar transport (Petrasek et al. 2006), root development (Galweiler et al. 1998), shoot development
(Vernoux et al. 2000) and xylem and phloem pattern formation (Alonso-Peral et al. 2006).
AGI: AT1G73590. Pop. Ort.: POPTRDRAFT_728847 (PIN7) (PIN7) - estExt_Genewise1_v1.C_LG_XII1068
transporter
References
(Hawker and
Bowman
2004;
Mallory et al.
2004;
Baucher et
al. 2007;
Ochando et
al. 2008)
(Hawker and
Bowman
2004;
Baucher et
al. 2007;
Chandler et
al. 2007;
Ochando et
al. 2008)
(Helariutta
and Bhalerao
2003; Borghi
et al. 2007;
Wenzel et al.
2007;
Weijers et al.
2005)
Gene
Summary
Type
PIN3
PIN-FORMED 3: A regulator of auxin efflux and involved in differential growth. PIN3 is expressed in gravity-sensing
tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma
membrane and to vesicles. In roots, PIN3 is expressed without pronounced polarity in tiers two and three of the
columella cells, at the basal side of vascular cells, and to the lateral side of pericycle cells of the elongation zone. PIN3
overexpression inhibits root cell growth. Protein phosphorylation plays a role in PIN3 trafficking to the plasma
membrane.
auxin:hydrogen
symporter/
transporter
References
(Harrison
and Masson
2008)
Process: Auxin polar transport (Friml et al. 2002b), root development and regulation of root meristem growth (Blilou
et al. 2005) and root hair initiation and elongation (Lee and Cho 2006).
AGI: AT1G70940. Pop. Ort.: POPTRDRAFT_803601 (PIN6) (PIN6) - fgenesh4_pm.C_LG_VIII000556
PIN4
PIN-FORMED 4: Encodes a putative auxin efflux carrier that is localized in developing and mature root meristems. It
is involved in the maintenance of embryonic auxin gradients. A role for AtPIN4 in generating a sink for auxin below
the quiescent center of the root meristem that is essential for auxin distribution and patterning is proposed. In the root,
PIN4 is detected around the quiescent center and cells surrounding it, and localizes basally in provascular cells. PIN4
expression is upregulated in brassinosteroid-insensitive mutant (Li et al. 2005).
auxin:hydrogen
symporter/
transporter
(Weijers et
al. 2005)
Process: Auxin polar transport (Petrasek et al. 2006; Friml et al. 2002a), root development (Friml et al. 2002a) and
pattern specification process (Blilou et al. 2005).
AGI: AT2G01420. Pop. Ort.: POPTRDRAFT_803601 (PIN6) (PIN6) - fgenesh4_pm.C_LG_VIII000556
PLT1
PLETHORA 1: Encodes a member of the AINTEGUMENTA-like (AIL) subclass of the AP2/EREBP family of
transcription factors and is essential for quiescent center (QC) specification and stem cell activity. It is a key effector
for establishment of the stem cell niche during embryonic pattern formation. It is transcribed in response to auxin
accumulation and is dependent on auxin response transcription factors.
Process: Stem cell maintenance (Aida et al. 2004).
AGI: AT3G20840. Pop. Ort.: POPTRDRAFT_758079 (RAP23) (RAP23) - fgenesh4_pg.C_LG_III001621
transcription factor
(Galinha et
al. 2007)
Gene
Summary
Type
References
PLT2
PLETHORA 2: Encodes a member of the AINTEGUMENTA-like (AIL) subclass of the AP2/EREBP family of
transcription factors and is essential for quiescent center (QC) specification and stem cell activity. It is a key effector
for establishment of the stem cell niche during embryonic pattern formation. It is transcribed in response to auxin
accumulation and is dependent on auxin response transcription factors.
transcription factor
(Galinha et
al. 2007)
Process: Stem cell maintenance (Aida et al. 2004).
AGI: AT1G51190. Pop. Ort.: POPTRDRAFT_758079 (RAP23) (RAP23) - fgenesh4_pg.C_LG_III001621
PXL2
AGI: AT4G28650. Pop. Ort.: POPTRDRAFT_553299 - eugene3.00002614
leucine-rich repeat
transmembrane
protein
kinase,
putative
REV/IFL1
REVOLUTA: Member of the III HD-Zip family. REVOLUTA regulates meristem initiation at lateral positions. Has
overlapping functions with PHAVOLUTA and PHABULOSA.
DNA binding / lipid
binding
/
transcription factor
Process: Cell differentiation (Zhong and Ye 1999), meristem initiation (Otsuga et al. 2001), polarity specification of
adaxial/abaxial axis (Prigge et al. 2005) and xylem and phloem pattern formation (Emery et al. 2003).
AGI: AT5G60690. Pop. Ort.: POPTRDRAFT_741921 (HB2) - estExt_Genewise1_v1.C_660759
ROP1
RHO-RELATED PROTEIN FROM PLANTS 1: Expressed in the cambial zone and differentiating xylem in
eucalyptus. Encodes a pollen-specific Rop GTPase, member of the Rho family of small GTP binding proteins that
interacts with RIC3 and RIC4 to control tip growth in pollen tubes. These three proteins promote the proper targeting
of exocytic vesicles in the pollen tube tip. ROP1 activity is regulated by the REN1 GTPase activator protein.
AGI: AT3G51300. Pop. Ort.: POPTRDRAFT_827046 - estExt_fgenesh4_pg.C_570059
RPL
REPLUMLESS: Encodes a homeodomain transcription factor. Has sequence similarity to the Arabidopsis ovule
development regulator Bell1. Binds directly to the AGAMOUS cis-regulatory element. Its localization to the nucleus is
dependent on the coexpression of either STM or BP. Mutant has additional lateral organs and phyllotaxy defect.
Process: Internode patterning and xylem and phloem pattern formation (Smith and Hake 2003), vegetative to
reproductive phase transition of meristem and maintenance of floral meristem identity (Smith et al. 2004), floral whorl
morphogenesis (Bao et al. 2004), shoot development (Kanrar et al. 2006) and secondary shoot formation (Kanrar et al.
2008).
AGI: AT5G02030. Pop. Ort.: POPTRDRAFT_218986 - gw1.VII.3291.1
GTP binding /
GTPase activating
protein binding /
GTPase/
protein
binding
DNA binding /
sequence-specific
DNA binding /
transcription factor
(Hirakawa et
al. 2010)
(Hawker and
Bowman
2004;
Baucher et
al. 2007;
Ochando et
al. 2008)
(Foucart et
al. 2009)
(Bao et al.
2004;
Rutjens et al.
2009)
Gene
Summary
Type
SCR
SCARECROW: GRAS transcription factor family member. Encodes a member of a novel family having similarity to
DNA binding proteins containing basic-leucine zipper regions; scr is expressed in cortex/endodermal initial cells and
in the endodermal cell lineage. Regulates the radial organization of the root. Is required cell-autonomously for distal
specification of the quiescent center, which in turn regulates stem cell fate of immediately surrounding cells. SCR
appears to be a direct target of SHR.
protein binding /
protein
homodimerization/
sequence-specific
DNA binding /
transcription factor
Process: Asymmetric cell division (Di Laurenzio et al. 1996) and radial pattern formation (Wysocka-Diller et al. 2000).
AGI: AT3G54220. Pop. Ort.: POPTRDRAFT_589585 (GRAS2) - eugene3.00280321
SHR
SHORT ROOT: Involved in radial organization of the root and shoot axial organs. Essential for normal shoot
gravitropism. The protein moves in a highly specific manner from the cells of the stele in which it is synthesized
outward. Movement requires sequences within the GRAS and VHIID domains.
Process: Asymmetric cell division and radial pattern formation (Helariutta et al. 2000).
protein binding /
sequence-specific
DNA binding /
transcription factor
AGI: AT4G37650. Pop. Ort.: POPTRDRAFT_586010 (GRAS7) - eugene3.01860017
STM
SHOOT MERISTEMLESS: Class I knotted-like homeodomain protein that is required for shoot apical meristem
(SAM) formation during embryogenesis and for SAM function throughout the lifetime of the plant. Functions by
preventing incorporation of cells in the meristem center into differentiating organ primordia.
transcription factor
Process: Cytokinin biosynthetic process (Yanai et al. 2005), regulation of meristem structural organization (Lenhard et
al. 2002) and stem cell maintenance (Brand et al. 2002).
References
(Scheres et
al. 1995;
WysockaDiller et al.
2000; Cui et
al. 2007;
Paquette and
Benfey
2005)
(Gallagher
and Benfey
2009; Cui et
al. 2007;
Paquette and
Benfey 2005;
Levesque et
al. 2006)
(Groover et
al.
2006;
Kanrar et al.
2006)
AGI: AT1G62360. Pop. Ort.: POPTRDRAFT_811717 - fgenesh4_pm.C_scaffold_166000014
SUR1
SUPERROOT 1: Confers auxin overproduction. Mutants have an over-proliferation of lateral roots. Encodes a C-S
lyase involved in converting S-alkylthiohydroximate to thiohydroximate in glucosinolate biosynthesis.
Process: Indoleacetic acid biosynthetic process (Boerjan et al. 1995) and regulation of cell growth by extracellular
stimulus (De Grauwe et al. 2005).
Salkylthiohydroxima
te lyase/ carbonsulfur
lyase/
transaminase
AGI: AT2G20610. Pop. Ort.: POPTRDRAFT_836654 (AMT1) - estExt_fgenesh4_pm.C_640067
T10O8.30
AGI: AT5G01320. Pop. Ort.: POPTRDRAFT_835585 - estExt_fgenesh4_pm.C_LG_XVI0442
pyruvate
decarboxylase,
putative
(Seo et al.
1998;
Stepanova et
al. 2005)
Gene
Summary
Type
T14P4.22
AGI: AT1G02590. Pop. Ort.: POPTRDRAFT_588889 (AAO3) - eugene3.27080003
aldehyde
putative
T22N19.10
AGI: AT5G13360. Pop. Ort.: POPTRDRAFT_750995 (GH3-7) - fgenesh4_pg.C_LG_I000598
auxin-responsive
GH3 family protein
T22N19.20
AGI: AT5G13370. Pop. Ort.: POPTRDRAFT_750995 (GH3-7) - fgenesh4_pg.C_LG_I000598
auxin-responsive
GH3 family protein
T24P13.11
AGI: AT1G26730. Pop. Ort.: POPTRDRAFT_765774 - fgenesh4_pg.C_LG_VIII000788
EXS family protein
/
ERD1/XPR1/SYG1
family protein
TDR/PXY
AGI: AT5G61480. Pop. Ort.: POPTRDRAFT_1073831 - estExt_Genewise1Plus.C_LG_III1142
leucine-rich repeat
transmembrane
protein
kinase,
putative
TGG1
THIOGLUCOSIDE GLUCOHYDROLASE 1: member of Glycoside Hydrolase Family 1. encodes one of two known
functional myrosinase enzymes in Arabidopsis. The enzyme catalyzes the hydrolysis of glucosinolates into compounds
that are toxic to various microbes and herbivores.
hydrolase,
hydrolyzing
Oglycosyl
compounds
/
thioglucosidase
AGI: AT5G26000. Pop. Ort.: POPTRDRAFT_800515 - fgenesh4_pm.C_LG_IV000202
TGG2
GLUCOSIDE GLUCOHYDROLASE 2: Myrosinase (thioglucoside glucohydrolase) gene involved in glucosinoloate
metabolism.
AGI: AT5G25980. Pop. Ort.: POPTRDRAFT_800515 - fgenesh4_pm.C_LG_IV000202
TSA1
TRYPTOPHAN SYNTHASE ALPHA CHAIN: Catalyzes the conversion of indole-3-glycerolphosphate to indole, the
penultimate reaction in the biosynthesis of tryptophan. Functions as a heterocomplex with tryptophan synthase beta
subunit (TSA2).
AGI: AT3G54640. Pop. Ort.: POPTRDRAFT_818693 - estExt_fgenesh4_pg.C_LG_V1322
References
oxidase,
hydrolase,
hydrolyzing
Oglycosyl
compounds
/
thioglucosidase
tryptophan synthase
(Hirakawa et
al. 2010;
Etchells and
Turner 2010)
(Alvarez et
al. 2008;
Barth and
Jander 2006)
(Barth and
Jander 2006)
Gene
Summary
Type
TSA-like
AGI: AT4G02610. Pop. Ort.: POPTRDRAFT_818693 - estExt_fgenesh4_pg.C_LG_V1322
tryptophan
synthase,
alpha
subunit, putative
TSB1 TRP2
TRYPTOPHAN SYNTHASE BETA-SUBUNIT 1: A.thaliana tryptophan synthase beta subunit (trpB)
tryptophan synthase
References
(Jing et al.
2009)
Process: Indoleacetic acid biosynthetic process (Normanly et al. 1993).
AGI: AT5G54810. Pop. Ort.: POPTRDRAFT_888009 - e_gw1.XI.471.1
TSB2
TRYPTOPHAN SYNTHASE BETA-SUBUNIT 2: Tryptophan synthase beta. Expressed at low levels in all tissues.
tryptophan synthase
AGI: AT4G27070. Pop. Ort.: POPTRDRAFT_888009 - e_gw1.XI.471.1
VND7
VASCULAR RELATED NAC-DOMAIN PROTEIN 7: NAM (no apical meristem) family member. Encodes a NACdomain transcription factor with transcriptional activation activity that is involved in xylem formation. Induces
transdifferentiation of various cells into protoxylem vessel elements. Located in the nucleus. Expression induced in the
presence of auxin, cytokinin and brassinosteroids.
Process: Response to brassinosteroid stimulus, response to cytokinin stimulus and xylem development (Kubo et al.
2005).
anscription
activator/
transcription factor/
transcription
regulator
(Soyano et
al. 2008;
Baucher et
al. 2007;
Kubo et al.
2005)
AGI: AT1G71930. Pop. Ort.: POPTRDRAFT_592235 (NAC055) - eugene3.00410078
WES1
Encodes an IAA-amido synthase that conjugates Asp and other amino acids to auxin in vitro. Lines carrying insertions
in this gene are hypersensitive to auxin.
indole-3-acetic acid
amido synthetase
(Park et al.
2007)
Process: Auxin homeostasis and response to auxin stimulus (Staswick et al. 2005).
AGI: AT4G27260. Pop. Ort.: POPTRDRAFT_571444 (GH3-6) - eugene3.00130808
WOL
WOODEN LEG: Histidine kinase, cytokinin-binding receptor that transduces cytokinin signals across the plasma
membrane.
Process: Cytokinin mediated signaling pathway (Hwang et al. 2002), embryonic root morphogenesis (Mahonen et al.
2000) and regulation of shoot development (Riefler et al. 2006).
AGI: AT2G01830. Pop. Ort.: POPTRDRAFT_766213 - fgenesh4_pg.C_LG_VIII001227
cytokinin receptor/
osmosensor/
phosphoprotein
phosphatase/
protein
histidine
kinase
(Kuroha et
al. 2006;
Nishimura et
al. 2004;
FrancoZorrilla et al.
2005;
Baucher et
al. 2007)
Gene
Summary
Type
References
WOX4
WUSCHEL RELATED HOMEOBOX 4: Encodes a WUSCHEL-related homeobox gene family member with 65
amino acids in its homeodomain. Proteins in this family contain a sequence of eight residues (TLPLFPMH)
downstream of the homeodomain called the WUS box. This protein also contains an acidic domain approximately 10
residues upstream of the WUS box.
transcription factor
(Ji et al.
2010)
transcription factor
(Gonzali et
al. 2005)
AGI: AT1G46480. Pop. Ort.: POPTRDRAFT_836454 - estExt_fgenesh4_pm.C_400124
WOX5
WUSCHEL RELATED HOMEOBOX 5: Response to auxin stimulus
AGI: AT3G11260. Pop. Ort.: POPTRDRAFT_805455 - fgenesh4_pm.C_LG_X000761
WUS
WUSCHEL: Homeobox gene controlling the stem cell pool. Expressed in the stem cell organizing center of meristems.
Required to keep the stem cells in an undifferentiated state. Regulation of WUS transcription is a central checkpoint in
stem cell control. The size of the WUS expression domain controls the size of the stem cell population through WUS
indirectly activating the expression of CLAVATA3 (CLV3) in the stem cells and CLV3 repressing WUS transcription
through the CLV1 receptor kinase signaling pathway. Repression of WUS transcription through AGAMOUS (AG)
activity controls stem cell activity in the determinate floral meristem. Binds to TAAT element core motif.
DNA binding /
protein binding /
transcription factor/
transcription
regulator
(Finlayson et
al. 2010;
Ikeda et al.
2009; Su et
al. 2009)
Process: Maintenance of shoot apical meristem identity (Sonoda et al. 2007) and stem cell maintenance (Laux et al.
1996).
AGI: AT2G17950. Pop. Ort.: POPTRDRAFT_827060 - estExt_fgenesh4_pg.C_570090
ZPR3
LITTLE ZIPPER 3: ZPR3 is a small-leucine zipper containing protein that is involved in the establishment of leaf
polarity.
protein binding
(Kim et al.
2008)
Process: adaxial/abaxial axis specification, leaf shaping and vascular tissue pattern formation and meristem regulation
and maintenance (Wenkel et al. 2007) and negative regulation of transcription factor activity (Kim et al. 2008).
AGI: AT3G52770. Pop. Ort.: POPTRDRAFT_560740 - eugene3.00060699
ZPR4
AGI: AT2G36307. Pop. Ort.: POPTRDRAFT_567947 - eugene3.00102505
(Wenkel et
al. 2007)
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The plethora genes mediate patterning of the
arabidopsis root stem cell niche. Cell 119 (1):109-120. doi:10.1016/j.cell.2004.09.018
S0092867404008931 [pii]
Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage
reaction. Biochem J 416 (2):289-296. doi:BJ20080568 [pii]
10.1042/BJ20080568
Alonso-Peral MM, Candela H, del Pozo JC, Martinez-Laborda A, Ponce MR, Micol JL (2006) The hve/cand1 gene is required for the early patterning of leaf venation in
arabidopsis. Development 133 (19):3755-3766. doi:dev.02554 [pii]
10.1242/dev.02554
Alvarez S, He Y, Chen S (2008) Comparative investigations of the glucosinolate-myrosinase system in arabidopsis suspension cells and hypocotyls. Plant Cell Physiol 49
(3):324-333. doi:pcn007 [pii]
10.1093/pcp/pcn007
Atanassov, II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of arabidopsis secondary cell
walls. J Biol Chem 284 (6):3833-3841. doi:M807456200 [pii]
10.1074/jbc.M807456200
Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterization of three
members of the arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45 (6):982-993.
doi:TPJ2666 [pii]
10.1111/j.1365-313X.2006.02666.x
Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the athb-8 homeobox gene is restricted to provascular cells in arabidopsis thaliana.
Development 121 (12):4171-4182
Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The arabidopsis athb-8 hd-zip protein acts as a differentiation-promoting
transcription factor of the vascular meristems. Plant Physiol 126 (2):643-655
Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, cyp83b1 and cyp83a1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127 (1):108118
Bao X, Franks RG, Levin JZ, Liu Z (2004) Repression of agamous by bellringer in floral and inflorescence meristems. Plant Cell 16 (6):1478-1489. doi:10.1105/tpc.021147
tpc.021147 [pii]
Bartel B, Fink GR (1995) Ilr1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268 (5218):1745-1748
Barth C, Jander G (2006) Arabidopsis myrosinases tgg1 and tgg2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46 (4):549-562.
doi:TPJ2716 [pii]
10.1111/j.1365-313X.2006.02716.x
Baucher M, El Jaziri M, Vandeputte O (2007) From primary to secondary growth: Origin and development of the vascular system. J Exp Bot 58 (13):3485-3501
Belin C, Megies C, Hauserova E, Lopez-Molina L (2009) Abscisic acid represses growth of the arabidopsis embryonic axis after germination by enhancing auxin signaling.
Plant Cell 21 (8):2253-2268. doi:tpc.109.067702 [pii]
10.1105/tpc.109.067702
Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, Pautot V (2006) Knat6: An arabidopsis homeobox gene involved in meristem activity and organ separation. Plant
Cell 18 (8):1900-1907. doi:tpc.106.041988 [pii]
10.1105/tpc.106.041988
Bender J, Fink GR (1998) A myb homologue, atr1, activates tryptophan gene expression in arabidopsis. Proc Natl Acad Sci U S A 95 (10):5655-5660
Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis aux1 gene: A permease-like regulator of root
gravitropism. Science 273 (5277):948-950
Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The arabidopsis max pathway controls shoot branching by regulating auxin transport. Curr Biol 16
(6):553-563. doi:S0960-9822(06)01119-5 [pii]
10.1016/j.cub.2006.01.058
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The pin auxin efflux facilitator network controls growth and
patterning in arabidopsis roots. Nature 433 (7021):39-44. doi:nature03184 [pii]
10.1038/nature03184
Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in
arabidopsis, confers auxin overproduction. Plant Cell 7 (9):1405-1419
Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) Apl regulates vascular tissue identity in arabidopsis. Nature 426 (6963):181-186.
doi:10.1038/nature02100
nature02100 [pii]
Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) Max3/ccd7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling
molecule. Curr Biol 14 (14):1232-1238. doi:10.1016/j.cub.2004.06.061
S0960982204004725 [pii]
Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) Max1 encodes a cytochrome p450 family
member that acts downstream of max3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8 (3):443-449. doi:S1534-5807(05)00013-4 [pii]
10.1016/j.devcel.2005.01.009
Borghi L, Bureau M, Simon R (2007) Arabidopsis jagged lateral organs is expressed in boundaries and coordinates knox and pin activity. Plant Cell 19 (6):1795-1808.
doi:tpc.106.047159 [pii]
10.1105/tpc.106.047159
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in arabidopsis on a feedback loop regulated by clv3 activity. Science 289
(5479):617-619. doi:8704 [pii]
Brand U, Grunewald M, Hobe M, Simon R (2002) Regulation of clv3 expression by two homeobox genes in arabidopsis. Plant Physiol 129 (2):565-575.
doi:10.1104/pp.001867
Brandstatter I, Kieber JJ (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in arabidopsis. Plant Cell 10
(6):1009-1019
Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) Brl1 and brl3 are novel brassinosteroid receptors that function in
vascular differentiation in arabidopsis. Development 131 (21):5341-5351. doi:131/21/5341 [pii]
10.1242/dev.01403
Carrier DJ, Bakar NT, Swarup R, Callaghan R, Napier RM, Bennett MJ, Kerr ID (2008) The binding of auxin to the arabidopsis auxin influx transporter aux1. Plant Physiol
148 (1):529-535. doi:pp.108.122044 [pii]
10.1104/pp.108.122044
Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The arabidopsis atr1 myb transcription factor controls indolic glucosinolate
homeostasis. Plant Physiol 137 (1):253-262. doi:pp.104.054395 [pii]
10.1104/pp.104.054395
Ceserani T, Trofka A, Gandotra N, Nelson T (2009) Vh1/brl2 receptor-like kinase interacts with vascular-specific adaptor proteins vit and vik to influence leaf venation.
Plant J 57 (6):1000-1014. doi:TPJ3742 [pii]
10.1111/j.1365-313X.2008.03742.x
Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The ap2 transcription factors dornroschen and dornroschen-like redundantly control arabidopsis embryo patterning
via interaction with phavoluta. Development 134 (9):1653-1662. doi:dev.001016 [pii]
10.1242/dev.001016
Clark SE, Williams RW, Meyerowitz EM (1997) The clavata1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in arabidopsis. Cell 89
(4):575-585
Clay NK, Nelson T (2002) Vh1, a provascular cell-specific receptor kinase that influences leaf cell patterns in arabidopsis. Plant Cell 14 (11):2707-2722
Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase
involved in vein definition and in polar auxin transport. Plant Physiol 138 (2):767-777. doi:pp.104.055756 [pii]
10.1104/pp.104.055756
Cock JM, McCormick S (2001) A large family of genes that share homology with clavata3. Plant Physiol 126 (3):939-942
Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting
shr movement defines a single layer of endodermis in plants. Science 316 (5823):421-425. doi:316/5823/421 [pii]
10.1126/science.1139531
D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the arabidopsis response regulator gene family to cytokinin. Plant Physiol 124 (4):1706-1717
De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: Tripartite control of growth in the arabidopsis
hypocotyl. Plant Cell Physiol 46 (6):827-836. doi:pci111 [pii]
10.1093/pcp/pci111
De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxindependent regulation of lateral root positioning in the basal meristem of arabidopsis. Development 134 (4):681-690. doi:dev.02753 [pii]
10.1242/dev.02753
De Smet I, Vassileva V, De Rybel B, Levesque MP, Grunewald W, Van Damme D, Van Noorden G, Naudts M, Van Isterdael G, De Clercq R, Wang JY, Meuli N, Vanneste
S, Friml J, Hilson P, Jurgens G, Ingram GC, Inze D, Benfey PN, Beeckman T (2008) Receptor-like kinase acr4 restricts formative cell divisions in the arabidopsis
root. Science 322 (5901):594-597. doi:322/5901/594 [pii]
10.1126/science.1160158
DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The clavata1-related bam1, bam2 and bam3 receptor kinase-like proteins are required for
meristem function in arabidopsis. Plant J 45 (1):1-16. doi:TPJ2592 [pii]
10.1111/j.1365-313X.2005.02592.x
Deyoung BJ, Clark SE (2008) Bam receptors regulate stem cell specification and organ development through complex interactions with clavata signaling. Genetics 180
(2):895-904. doi:genetics.108.091108 [pii]
10.1534/genetics.108.091108
Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The scarecrow gene regulates an asymmetric
cell division that is essential for generating the radial organization of the arabidopsis root. Cell 86 (3):423-433. doi:S0092-8674(00)80115-4 [pii]
Douglas SJ, Riggs CD (2005) Pedicel development in arabidopsis thaliana: Contribution of vascular positioning and the role of the brevipedicellus and erecta genes. Dev Biol
284 (2):451-463. doi:S0012-1606(05)00391-X [pii]
10.1016/j.ydbio.2005.06.011
Doyle MR, Amasino RM (2009) A single amino acid change in the enhancer of zeste ortholog curly leaf results in vernalization-independent, rapid flowering in arabidopsis.
Plant Physiol 151 (3):1688-1697. doi:pp.109.145581 [pii]
10.1104/pp.109.145581
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of arabidopsis shoots by class iii hd-zip and kanadi genes.
Curr Biol 13 (20):1768-1774. doi:S0960982203007188 [pii]
Etchells JP, Turner SR (2010) The pxy-cle41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division.
Development 137 (5):767-774. doi:137/5/767 [pii]
10.1242/dev.044941
Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid clv3, cle19, and cle40 peptides trigger consumption of the root
meristem in arabidopsis through a clavata2-dependent pathway. Plant Cell 17 (9):2542-2553. doi:tpc.105.034009 [pii]
10.1105/tpc.105.034009
Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in arabidopsis. Plant Physiol 152 (4):1914-1927. doi:pp.109.148833 [pii]
10.1104/pp.109.148833
Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for arabidopsis planar polarity is mediated by
combined aux1, ein2, and gnom activity. Curr Biol 16 (21):2143-2149. doi:S0960-9822(06)02204-4 [pii]
10.1016/j.cub.2006.08.091
Foucart C, Jauneau A, Gion JM, Amelot N, Martinez Y, Panegos P, Grima-Pettenati J, Sivadon P (2009) Overexpression of egrop1, a eucalyptus vascular-expressed rac-like
small gtpase, affects secondary xylem formation in arabidopsis thaliana. New Phytologist 183 (4):1014-1029. doi:10.1111/j.1469-8137.2009.02910.x
Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in arabidopsis and the roles of
cytokinin receptors cre1/ahk4 and ahk3. Plant Physiol 138 (2):847-857. doi:pp.105.060517 [pii]
10.1104/pp.105.060517
Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002a) Atpin4 mediates sink-driven auxin
gradients and root patterning in arabidopsis. Cell 108 (5):661-673. doi:S0092867402006566 [pii]
Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator pin3 mediates tropism in arabidopsis. Nature 415 (6873):806809. doi:10.1038/415806a
415806a [pii]
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) Plethora proteins as dose-dependent master regulators of arabidopsis root
development. Nature 449 (7165):1053-1057. doi:nature06206 [pii]
10.1038/nature06206
Gallagher KL, Benfey PN (2009) Both the conserved gras domain and nuclear localization are required for short-root movement. Plant J 57 (5):785-797. doi:TPJ3735 [pii]
10.1111/j.1365-313X.2008.03735.x
Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by atpin1 in arabidopsis vascular tissue. Science
282 (5397):2226-2230
Glover BJ, Torney K, Wilkins CG, Hanke DE (2008) Cytokinin independent-1 regulates levels of different forms of cytokinin in arabidopsis and mediates response to
nutrient stress. J Plant Physiol 165 (3):251-261. doi:S0176-1617(07)00098-3 [pii]
10.1016/j.jplph.2007.01.011
Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene agamous during early
organogenesis. Development 132 (3):429-438. doi:dev.01600 [pii]
10.1242/dev.01600
Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P (2005) A turanose-insensitive mutant suggests a role for wox5 in auxin homeostasis in arabidopsis
thaliana. Plant J 44 (4):633-645. doi:TPJ2555 [pii]
10.1111/j.1365-313X.2005.02555.x
Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the lateral suppressor gene in arabidopsis reveals a conserved control
mechanism for axillary meristem formation. Genes Dev 17 (9):1175-1187. doi:10.1101/gad.260703
17/9/1175 [pii]
Green KA, Prigge MJ, Katzman RB, Clark SE (2005) Corona, a member of the class iii homeodomain leucine zipper gene family in arabidopsis, regulates stem cell
specification and organogenesis. Plant Cell 17 (3):691-704. doi:tpc.104.026179 [pii]
10.1105/tpc.104.026179
Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y (2006) The populus homeobox gene arborknox1 reveals overlapping mechanisms
regulating the shoot apical meristem and the vascular cambium. Plant Molecular Biology 61 (6):917-932. doi:10.1007/s11103-006-0059-y
Guo Y, Qin G, Gu H, Qu LJ (2009) Dof5.6/hca2, a dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in arabidopsis.
Plant Cell 21 (11):3518-3534. doi:tpc.108.064139 [pii]
10.1105/tpc.108.064139
Ha CM, Jun JH, Nam HG, Fletcher JC (2007) Blade-on-petiole 1 and 2 control arabidopsis lateral organ fate through regulation of lob domain and adaxial-abaxial polarity
genes. Plant Cell 19 (6):1809-1825. doi:tpc.107.051938 [pii]
10.1105/tpc.107.051938
Hamant O, Nogue F, Belles-Boix E, Jublot D, Grandjean O, Traas J, Pautot V (2002) The knat2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant
Physiol 130 (2):657-665. doi:10.1104/pp.004564
Hanzawa Y, Takahashi T, Komeda Y (1997) Acl5: An arabidopsis gene required for internodal elongation after flowering. Plant J 12 (4):863-874
Harrison BR, Masson PH (2008) Arl2, arg1 and pin3 define a gravity signal transduction pathway in root statocytes. Plant J 53 (2):380-392. doi:TPJ3351 [pii]
10.1111/j.1365-313X.2007.03351.x
Hawker NP, Bowman JL (2004) Roles for class iii hd-zip and kanadi genes in arabidopsis root development. Plant Physiol 135 (4):2261-2270. doi:10.1104/pp.104.040196
pp.104.040196 [pii]
Hejatko J, Ryu H, Kim GT, Dobesova R, Choi S, Choi SM, Soucek P, Horak J, Pekarova B, Palme K, Brzobohaty B, Hwang I (2009) The histidine kinases cytokininindependent1 and arabidopsis histidine kinase2 and 3 regulate vascular tissue development in arabidopsis shoots. Plant Cell
Helariutta Y, Bhalerao R (2003) Between xylem and phloem: The genetic control of cambial activity in plants. Plant Biology 5 (5):465-472
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The short-root gene controls radial patterning of the arabidopsis root
through radial signaling. Cell 101 (5):555-567. doi:S0092-8674(00)80865-X [pii]
Held MA, Penning B, Brandt AS, Kessans SA, Yong WD, Scofield SR, Carpita NC (2008) Small-interfering rnas from natural antisense transcripts derived from a cellulose
synthase gene modulate cell wall biosynthesis in barley. Proceedings of the National Academy of Sciences of the United States of America 105 (51):20534-20539.
doi:10.1073/pnas.0809408105
Hillebrand H, Bartling D, Weiler EW (1998) Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in
indole-acetic acid biosynthesis in arabidopsis thaliana. Plant Mol Biol 36 (1):89-99
Hirakawa Y, Kondo Y, Fukuda H (2010) Regulation of vascular development by cle peptide-receptor systems. J Integr Plant Biol 52 (1):8-16. doi:JIPB904 [pii]
10.1111/j.1744-7909.2010.00904.x
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular
stem cell fate by a cle peptide/receptor system. Proc Natl Acad Sci U S A 105 (39):15208-15213. doi:0808444105 [pii]
10.1073/pnas.0808444105
Hord CL, Chen C, Deyoung BJ, Clark SE, Ma H (2006) The bam1/bam2 receptor-like kinases are important regulators of arabidopsis early anther development. Plant Cell 18
(7):1667-1680. doi:tpc.105.036871 [pii]
10.1105/tpc.105.036871
Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in arabidopsis. Plant Physiol 129 (2):500-515. doi:10.1104/pp.005504
Ibdah M, Chen YT, Wilkerson CG, Pichersky E (2009) An aldehyde oxidase in developing seeds of arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol 150
(1):416-423. doi:pp.109.135848 [pii]
10.1104/pp.109.135848
Ikeda M, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis wuschel is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in
floral patterning. Plant Cell 21 (11):3493-3505. doi:tpc.109.069997 [pii]
10.1105/tpc.109.069997
Ikezaki M, Kojima M, Sakakibara H, Kojima S, Ueno Y, Machida C, Machida Y (2010) Genetic networks regulated by asymmetric leaves1 (as1) and as2 in leaf development
in arabidopsis thaliana: Knox genes control five morphological events. Plant J 61 (1):70-82. doi:TPJ4033 [pii]
10.1111/j.1365-313X.2009.04033.x
Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T (2006) The dwarf phenotype of the arabidopsis acl5 mutant is suppressed by a mutation in an
upstream orf of a bhlh gene. Development 133 (18):3575-3585. doi:133/18/3575 [pii]
10.1242/dev.02535
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-cle peptides as suppressors of plant stem cell differentiation. Science 313
(5788):842-845. doi:313/5788/842 [pii]
10.1126/science.1128436
Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an nac (nam-ataf1,2-cuc2)
transcription factor attenuates aba signalling for efficient basal defence towards blumeria graminis f. Sp. Hordei in arabidopsis. Plant J 56 (6):867-880. doi:TPJ3646
[pii]
10.1111/j.1365-313X.2008.03646.x
Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ (2010) Wox4 promotes procambial development. Plant Physiol 152 (3):1346-1356. doi:pp.109.149641 [pii]
10.1104/pp.109.149641
Jing Y, Cui D, Bao F, Hu Z, Qin Z, Hu Y (2009) Tryptophan deficiency affects organ growth by retarding cell expansion in arabidopsis. Plant J 57 (3):511-521. doi:TPJ3706
[pii]
10.1111/j.1365-313X.2008.03706.x
Johnson LA, Douglas CJ (2007) Populus trichocarpa monopteros/auxin response factor5 (arf5) genes: Comparative structure, subfunctionalization, and populus arabidopsis
microsynteny. Canadian Journal of Botany-Revue Canadienne De Botanique 85 (11):1058-1070. doi:10.1139/b07-065
Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in arabidopsis thaliana. Plant Cell Physiol 49 (9):1342-1349.
doi:pcn109 [pii]
10.1093/pcp/pcn109
Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:Atp/adp isopentenyltransferases. Plant Cell Physiol 42 (7):677-685
Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith HM (2008) Regulatory networks that function to specify flower meristems require the function of homeobox genes
pennywise and pound-foolish in arabidopsis. Plant J 54 (5):924-937. doi:TPJ3458 [pii]
10.1111/j.1365-313X.2008.03458.x
Kanrar S, Onguka O, Smith HM (2006) Arabidopsis inflorescence architecture requires the activities of knox-bell homeodomain heterodimers. Planta 224 (5):1163-1173.
doi:10.1007/s00425-006-0298-9
Kayes JM, Clark SE (1998) Clavata2, a regulator of meristem and organ development in arabidopsis. Development 125 (19):3843-3851
Kelley DR, Skinner DJ, Gasser CS (2009) Roles of polarity determinants in ovule development. Plant J 57 (6):1054-1064. doi:TPJ3752 [pii]
10.1111/j.1365-313X.2008.03752.x
Kiba T, Yamada H, Mizuno T (2002) Characterization of the arr15 and arr16 response regulators with special reference to the cytokinin signaling pathway mediated by the
ahk4 histidine kinase in roots of arabidopsis thaliana. Plant Cell Physiol 43 (9):1059-1066
Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-a response regulator, arr15, acts as a negative regulator in the cytokinin-mediated
signal transduction in arabidopsis thaliana. Plant Cell Physiol 44 (8):868-874
Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by ahk3 through phosphorylation of
arr2 in arabidopsis. Proc Natl Acad Sci U S A 103 (3):814-819. doi:0505150103 [pii]
10.1073/pnas.0505150103
Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) Microrna-directed cleavage of athb15 mrna
regulates vascular development in arabidopsis inflorescence stems. Plant J 42 (1):84-94. doi:TPJ2354 [pii]
10.1111/j.1365-313X.2005.02354.x
Kim YS, Kim SG, Lee M, Lee I, Park HY, Seo PJ, Jung JH, Kwon EJ, Suh SW, Paek KH, Park CM (2008) Hd-zip iii activity is modulated by competitive inhibitors via a
feedback loop in arabidopsis shoot apical meristem development. Plant Cell 20 (4):920-933. doi:tpc.107.057448 [pii]
10.1105/tpc.107.057448
Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wisniewska J, Paciorek T, Benkova E, Friml J (2008) Arf gef-dependent transcytosis and polar delivery of pin auxin
carriers in arabidopsis. Curr Biol 18 (7):526-531. doi:S0960-9822(08)00322-9 [pii]
10.1016/j.cub.2008.03.021
Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the arabidopsis auxin influx carrier aux1 uses a novel pathway distinct from
pin1. Plant Cell 18 (11):3171-3181. doi:tpc.106.042770 [pii]
10.1105/tpc.106.042770
Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen
response in arabidopsis root cultures. Plant Cell 14 (10):2481-2494
Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) Anac012, a member of the plant-specific nac transcription factor family, negatively regulates xylary fiber
development in arabidopsis thaliana. Plant Journal 50 (6):1035-1048. doi:10.1111/j.1365-313X.2007.03109.x
Koiwai H, Akaba S, Seo M, Komano T, Koshiba T (2000) Functional expression of two arabidopsis aldehyde oxidases in the yeast pichia pastoris. J Biochem 127 (4):659664
Koizumi K, Sugiyama M, Fukuda H (2000) A series of novel mutants of arabidopsis thaliana that are defective in the formation of continuous vascular network: Calling the
auxin signal flow canalization hypothesis into question. Development 127 (15):3197-3204
Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by clv3 identified by in situ maldi-tof ms analysis. Science
313 (5788):845-848. doi:313/5788/845 [pii]
10.1126/science.1128439
Kramer EM, Bennett MJ (2006) Auxin transport: A field in flux. Trends Plant Sci 11 (8):382-386. doi:S1360-1385(06)00157-9 [pii]
10.1016/j.tplants.2006.06.002
Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel
formation. Genes Dev 19 (16):1855-1860. doi:19/16/1855 [pii]
10.1101/gad.1331305
Kuderova A, Urbankova I, Valkova M, Malbeck J, Brzobohaty B, Nemethova D, Hejatko J (2008) Effects of conditional ipt-dependent cytokinin overproduction on root
architecture of arabidopsis seedlings. Plant Cell Physiol 49 (4):570-582. doi:pcn029 [pii]
10.1093/pcp/pcn029
Kuroha T, Ueguchi C, Sakakibara H, Satoh S (2006) Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not
in adventitious roots. Plant Cell Physiol 47 (2):234-243. doi:pci240 [pii]
10.1093/pcp/pci240
Laux T, Mayer KF, Berger J, Jurgens G (1996) The wuschel gene is required for shoot and floral meristem integrity in arabidopsis. Development 122 (1):87-96
Lazar G, Goodman HM (2006) Max1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in arabidopsis. Proc Natl Acad Sci U S A 103 (2):472476. doi:0509463102 [pii]
10.1073/pnas.0509463102
Lee DJ, Kim S, Ha YM, Kim J (2008) Phosphorylation of arabidopsis response regulator 7 (arr7) at the putative phospho-accepting site is required for arr7 to act as a
negative regulator of cytokinin signaling. Planta 227 (3):577-587. doi:10.1007/s00425-007-0640-x
Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive
mirnas in arabidopsis. Nucleic Acids Research 38 (9):3081-3093. doi:10.1093/nar/gkp1240
Lee SH, Cho HT (2006) Pinoid positively regulates auxin efflux in arabidopsis root hair cells and tobacco cells. Plant Cell 18 (7):1604-1616. doi:tpc.105.035972 [pii]
10.1105/tpc.105.035972
Lehesranta SJ, Lichtenberger R, Helariutta Y (2009) Cell-to-cell communication in vascular morphogenesis. Curr Opin Plant Biol. doi:S1369-5266(09)00115-0 [pii]
10.1016/j.pbi.2009.09.004
Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) Wuschel controls meristem function by direct regulation of cytokinin-inducible
response regulators. Nature 438 (7071):1172-1175. doi:nature04270 [pii]
10.1038/nature04270
Lenhard M, Jurgens G, Laux T (2002) The wuschel and shootmeristemless genes fulfil complementary roles in arabidopsis shoot meristem regulation. Development 129
(13):3195-3206
Leon-Kloosterziel KM, Keijzer CJ, Koornneef M (1994) A seed shape mutant of arabidopsis that is affected in integument development. Plant Cell 6 (3):385-392.
doi:10.1105/tpc.6.3.385
6/3/385 [pii]
Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis
of the short-root developmental pathway in arabidopsis. PLoS Biol 4 (5):e143. doi:05-PLBI-RA-1464R2 [pii]
10.1371/journal.pbio.0040143
Li J, Zhao J, Rose AB, Schmidt R, Last RL (1995) Arabidopsis phosphoribosylanthranilate isomerase: Molecular genetic analysis of triplicate tryptophan pathway genes.
Plant Cell 7 (4):447-461. doi:10.1105/tpc.7.4.447
7/4/447 [pii]
Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in brassica and arabidopsis. Plant Cell 17
(10):2738-2753. doi:tpc.105.034397 [pii]
10.1105/tpc.105.034397
Li XG, Su YH, Zhao XY, Li W, Gao XQ, Zhang XS (2010) Cytokinin overproduction-caused alteration of flower development is partially mediated by cuc2 and cuc3 in
arabidopsis. Gene 450 (1-2):109-120. doi:S0378-1119(09)00572-1 [pii]
10.1016/j.gene.2009.11.003
Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in arabidopsis is expressed in the vegetative meristem and dramatically alters
leaf morphology when overexpressed in transgenic plants. Plant Cell 6 (12):1859-1876. doi:10.1105/tpc.6.12.1859
6/12/1859 [pii]
Liu Z, Duguay J, Ma F, Wang TW, Tshin R, Hopkins MT, McNamara L, Thompson JE (2008) Modulation of eif5a1 expression alters xylem abundance in arabidopsis
thaliana. Journal of Experimental Botany 59 (4):939-950. doi:10.1093/jxb/ern017
Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in arabidopsis roots. Plant Cell 17 (4):10901104. doi:tpc.104.029272 [pii]
10.1105/tpc.104.029272
Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor
ahp6 regulate cell fate during vascular development. Science 311 (5757):94-98. doi:311/5757/94 [pii]
10.1126/science.1118875
Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the
arabidopsis root. Genes Dev 14 (23):2938-2943
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) Microrna control of phabulosa in leaf development: Importance of pairing
to the microrna 5' region. EMBO J 23 (16):3356-3364. doi:10.1038/sj.emboj.7600340
7600340 [pii]
Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martinez-Andujar C, Kumar MBA, Pupel P, Nonogaki
H (2010) The microrna156 and microrna172 gene regulation cascades at post-germinative stages in arabidopsis. Seed Science Research 20 (2):79-87.
doi:10.1017/s0960258510000085
Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial
activity. Proceedings of the National Academy of Sciences of the United States of America 105 (50):20027-20031. doi:10.1073/pnas.0805619105
Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in arabidopsis leaf vascular development. Plant Physiol 131 (3):1327-1339. doi:10.1104/pp.013623
McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ, Venugopala Reddy G, Meyerowitz EM, Bowman JL, Gasser CS (2006) Aberrant testa shape encodes a
kanadi family member, linking polarity determination to separation and growth of arabidopsis ovule integuments. Plant J 46 (3):522-531. doi:TPJ2717 [pii]
10.1111/j.1365-313X.2006.02717.x
McCarthy RL, Zhong R, Ye ZH (2009) Myb83 is a direct target of snd1 and acts redundantly with myb46 in the regulation of secondary cell wall biosynthesis in arabidopsis.
Plant Cell Physiol 50 (11):1950-1964. doi:pcp139 [pii]
10.1093/pcp/pcp139
McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in arabidopsis. Development 125 (15):2935-2942
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of phabulosa and phavoluta in determining radial patterning in shoots. Nature 411 (6838):709713. doi:10.1038/35079635
35079635 [pii]
Mikkelsen MD, Fuller VL, Hansen BG, Nafisi M, Olsen CE, Nielsen HB, Halkier BA (2009) Controlled indole-3-acetaldoxime production through ethanol-induced
expression of cyp79b2. Planta 229 (6):1209-1217. doi:10.1007/s00425-009-0907-5
Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) Nac transcription factors, nst1 and nst3, are key regulators of the formation of
secondary walls in woody tissues of arabidopsis. Plant Cell 19 (1):270-280. doi:10.1105/tpc.106.047043
Mitsuda N, Ohme-Takagi M (2008) Nac transcription factors nst1 and nst3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation
after the establishment of tissue identity. Plant J 56 (5):768-778. doi:TPJ3633 [pii]
10.1111/j.1365-313X.2008.03633.x
Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of arabidopsis atp/adp
isopentenyltransferases and trna isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A 103 (44):16598-16603. doi:0603522103 [pii]
10.1073/pnas.0603522103
Mizukami Y, Ma H (1997) Determination of arabidopsis floral meristem identity by agamous. Plant Cell 9 (3):393-408. doi:10.1105/tpc.9.3.393
9/3/393 [pii]
Mo X, Zhu Q, Li X, Li J, Zeng Q, Rong H, Zhang H, Wu P (2006) The hpa1 mutant of arabidopsis reveals a crucial role of histidine homeostasis in root meristem
maintenance. Plant Physiol 141 (4):1425-1435. doi:pp.106.084178 [pii]
10.1104/pp.106.084178
Muller A, Hillebrand H, Weiler EW (1998) Indole-3-acetic acid is synthesized from l-tryptophan in roots of arabidopsis thaliana. Planta 206 (3):362-369
Muller R, Borghi L, Kwiatkowska D, Laufs P, Simon R (2006) Dynamic and compensatory responses of arabidopsis shoot and floral meristems to clv3 signaling. Plant Cell
18 (5):1188-1198. doi:tpc.105.040444 [pii]
10.1105/tpc.105.040444
Muniz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blazquez MA, Tuominen H (2008) Acaulis5 controls arabidopsis xylem
specification through the prevention of premature cell death. Development 135 (15):2573-2582. doi:dev.019349 [pii]
10.1242/dev.019349
Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001) Dfl1, an auxin-responsive gh3 gene homologue, negatively regulates shoot
cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25 (2):213-221. doi:tpj957 [pii]
Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) Cyp83a1 and cyp83b1, two nonredundant cytochrome p450 enzymes metabolizing
oximes in the biosynthesis of glucosinolates in arabidopsis. Plant Physiol 133 (1):63-72
Neu D, Lehmann T, Elleuche S, Pollmann S (2007) Arabidopsis amidase 1, a member of the amidase signature family. FEBS J 274 (13):3440-3451. doi:EJB5876 [pii]
10.1111/j.1742-4658.2007.05876.x
Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation
of shoot and root growth in arabidopsis. Plant Cell 16 (6):1365-1377. doi:10.1105/tpc.021477
tpc.021477 [pii]
Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci
U S A 90 (21):10355-10359
Normanly J, Grisafi P, Fink GR, Bartel B (1997) Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the nit1
gene. Plant Cell 9 (10):1781-1790. doi:10.1105/tpc.9.10.1781
9/10/1781 [pii]
Ochando I, Gonzalez-Reig S, Ripoll JJ, Vera A, Martinez-Laborda A (2008) Alteration of the shoot radial pattern in arabidopsis thaliana by a gain-of-function allele of the
class iii hd-zip gene incurvata4. International Journal of Developmental Biology 52 (7):953-961. doi:10.1387/ijdb.072306io
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis clv3 peptide directly binds clv1 ectodomain. Science 319 (5861):294. doi:319/5861/294 [pii]
10.1126/science.1150083
Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) Revoluta regulates meristem initiation at lateral positions. Plant J 25 (2):223-236. doi:tpj959 [pii]
Ouellet F, Overvoorde PJ, Theologis A (2001) Iaa17/axr3: Biochemical insight into an auxin mutant phenotype. Plant Cell 13 (4):829-841
Paquette AJ, Benfey PN (2005) Maturation of the ground tissue of the root is regulated by gibberellin and scarecrow and requires short-root. Plant Physiol 138 (2):636-640.
doi:138/2/636 [pii]
10.1104/pp.104.058362
Park JE, Seo PJ, Lee AK, Jung JH, Kim YS, Park CM (2007) An arabidopsis gh3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome b-regulated light
signals in hypocotyl growth. Plant Cell Physiol 48 (8):1236-1241. doi:pcm086 [pii]
10.1093/pcp/pcm086
Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of cov1, a gene involved in the regulation of vascular patterning in the stem of arabidopsis. Development 130
(10):2139-2148
Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate arabidopsis organ asymmetry via modulation of kanadi activity. Plant Cell 17 (11):2899-2910.
doi:tpc.105.034876 [pii]
10.1105/tpc.105.034876
Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek
P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) Pin proteins perform a rate-limiting function in cellular auxin efflux.
Science 312 (5775):914-918. doi:1123542 [pii]
10.1126/science.1123542
Piotrowski M, Schonfelder S, Weiler EW (2001) The arabidopsis thaliana isogene nit4 and its orthologs in tobacco encode beta-cyano-l-alanine hydratase/nitrilase. J Biol
Chem 276 (4):2616-2621. doi:10.1074/jbc.M007890200
M007890200 [pii]
Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from arabidopsis thaliana capable of converting indole-3-acetamide into the
plant growth hormone, indole-3-acetic acid. Phytochemistry 62 (3):293-300. doi:S0031942202005630 [pii]
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class iii homeodomain-leucine zipper gene family members have overlapping, antagonistic, and
distinct roles in arabidopsis development. Plant Cell 17 (1):61-76. doi:tpc.104.026161 [pii]
10.1105/tpc.104.026161
Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the arabidopsis gene monopteros in vascular development and plant cell
axialization. Planta 200 (2):229-237
Quint M, Barkawi LS, Fan KT, Cohen JD, Gray WM (2009) Arabidopsis iar4 modulates auxin response by regulating auxin homeostasis. Plant Physiol 150 (2):748-758.
doi:pp.109.136671 [pii]
10.1104/pp.109.136671
Ragni L, Belles-Boix E, Gunl M, Pautot V (2008) Interaction of knat6 and knat2 with brevipedicellus and pennywise in arabidopsis inflorescences. Plant Cell 20 (4):888-900.
doi:tpc.108.058230 [pii]
10.1105/tpc.108.058230
Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K (2008) Interplay of mir164, cup-shaped cotyledon genes and lateral suppressor controls axillary meristem
formation in arabidopsis thaliana. Plant J 55 (1):65-76. doi:TPJ3483 [pii]
10.1111/j.1365-313X.2008.03483.x
Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the arabidopsis shoot apex. Science 310 (5748):663-667. doi:1116261
[pii]
10.1126/science.1116261
Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J (2009) Genome-wide comparative analysis of type-a arabidopsis response regulator genes by overexpression
studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res 19 (10):1178-1190. doi:cr200988 [pii]
10.1038/cr.2009.88
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D,
Sherman BK, Yu G (2000) Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290 (5499):2105-2110. doi:9054 [pii]
Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root
development, and cytokinin metabolism. Plant Cell 18 (1):40-54. doi:tpc.105.037796 [pii]
10.1105/tpc.105.037796
Romanov GA, Lomin SN, Schmulling T (2006) Biochemical characteristics and ligand-binding properties of arabidopsis cytokinin receptor ahk3 compared to cre1/ahk4 as
revealed by a direct binding assay. J Exp Bot 57 (15):4051-4058. doi:erl179 [pii]
10.1093/jxb/erl179
Rose AB, Li J, Last RL (1997) An allelic series of blue fluorescent trp1 mutants of arabidopsis thaliana. Genetics 145 (1):197-205
Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009) Shoot apical meristem function in arabidopsis requires the combined activities of three
bel1-like homeodomain proteins. Plant J 58 (4):641-654. doi:TPJ3809 [pii]
10.1111/j.1365-313X.2009.03809.x
Scheres B, Dilaurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organization of the arabidopsis root display
specific defects throughout the embryonic axis. Development 121 (1):53-62
Schwartz SH, Qin X, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes from arabidopsis indicates that a carotenoid-derived
compound inhibits lateral branching. J Biol Chem 279 (45):46940-46945. doi:10.1074/jbc.M409004200
M409004200 [pii]
Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of
arabidopsis thaliana. Plant Physiol 116 (2):687-693
Shen H, Luong P, Huq E (2007) The f-box protein max2 functions as a positive regulator of photomorphogenesis in arabidopsis. Plant Physiol 145 (4):1471-1483.
doi:pp.107.107227 [pii]
10.1104/pp.107.107227
Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) Emb30 is essential for normal cell division, cell expansion, and cell adhesion in arabidopsis and
encodes a protein that has similarity to sec7. Cell 77 (7):1051-1062. doi:0092-8674(94)90444-8 [pii]
Smith HM, Campbell BC, Hake S (2004) Competence to respond to floral inductive signals requires the homeobox genes pennywise and pound-foolish. Curr Biol 14
(9):812-817. doi:10.1016/j.cub.2004.04.032
S0960982204003008 [pii]
Smith HM, Hake S (2003) The interaction of two homeobox genes, brevipedicellus and pennywise, regulates internode patterning in the arabidopsis inflorescence. Plant Cell
15 (8):1717-1727
Smolen GA, Pawlowski L, Wilensky SE, Bender J (2002) Dominant alleles of the basic helix-loop-helix transcription factor atr2 activate stress-responsive genes in
arabidopsis. Genetics 161 (3):1235-1246
Sonoda Y, Yao SG, Sako K, Sato T, Kato W, Ohto MA, Ichikawa T, Matsui M, Yamaguchi J, Ikeda A (2007) Sha1, a novel ring finger protein, functions in shoot apical
meristem maintenance in arabidopsis. Plant J 50 (4):586-596. doi:TPJ3062 [pii]
10.1111/j.1365-313X.2007.03062.x
Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) Max4 and rms1 are orthologous
dioxygenase-like genes that regulate shoot branching in arabidopsis and pea. Genes Dev 17 (12):1469-1474. doi:10.1101/gad.256603
17/12/1469 [pii]
Soyano T, Thitamadee S, Machida Y, Chua NH (2008) Asymmetric leaves2-like19/lateral organ boundaries domain30 and asl20/lbd18 regulate tracheary element
differentiation in arabidopsis. Plant Cell 20 (12):3359-3373. doi:tpc.108.061796 [pii]
10.1105/tpc.108.061796
Spichal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmulling T (2004) Two cytokinin receptors of arabidopsis thaliana, cre1/ahk4 and ahk3, differ in
their ligand specificity in a bacterial assay. Plant Cell Physiol 45 (9):1299-1305. doi:45/9/1299 [pii]
10.1093/pcp/pch132
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an arabidopsis enzyme family that conjugates amino acids
to indole-3-acetic acid. Plant Cell 17 (2):616-627. doi:tpc.104.026690 [pii]
10.1105/tpc.104.026690
Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive
mutants in arabidopsis. Plant Cell 17 (8):2230-2242. doi:tpc.105.033365 [pii]
10.1105/tpc.105.033365
Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) Max2 participates in an scf complex which acts locally at the node to suppress shoot branching. Plant J 50 (1):80-94.
doi:TPJ3032 [pii]
10.1111/j.1365-313X.2007.03032.x
Stirnberg P, van De Sande K, Leyser HM (2002) Max1 and max2 control shoot lateral branching in arabidopsis. Development 129 (5):1131-1141
Stone JM, Trotochaud AE, Walker JC, Clark SE (1998) Control of meristem development by clavata1 receptor kinase and kinase-associated protein phosphatase interactions.
Plant Physiol 117 (4):1217-1225
Su YH, Zhao XY, Liu YB, Zhang CL, O'Neill SD, Zhang XS (2009) Auxin-induced wus expression is essential for embryonic stem cell renewal during somatic
embryogenesis in arabidopsis. Plant J 59 (3):448-460. doi:TPJ3880 [pii]
10.1111/j.1365-313X.2009.03880.x
Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis asa1 is important for jasmonate-mediated
regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21 (5):1495-1511. doi:tpc.108.064303 [pii]
10.1105/tpc.108.064303
Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E,
Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L,
Bennett MJ (2008) The auxin influx carrier lax3 promotes lateral root emergence. Nat Cell Biol 10 (8):946-954. doi:ncb1754 [pii]
10.1038/ncb1754
Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in arabidopsis thaliana. J Biol
Chem 276 (28):26405-26410. doi:10.1074/jbc.M102130200
M102130200 [pii]
Tanaka H, Watanabe M, Sasabe M, Hiroe T, Tanaka T, Tsukaya H, Ikezaki M, Machida C, Machida Y (2007) Novel receptor-like kinase ale2 controls shoot development by
specifying epidermis in arabidopsis. Development 134 (9):1643-1652. doi:dev.003533 [pii]
10.1242/dev.003533
Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y (2002) Acr4, a putative receptor kinase gene of arabidopsis thaliana, that is expressed in the outer
cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol 43 (4):419-428
Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of arabidopsis encodes a cellulose synthase required for secondary cell wall
synthesis. Plant Cell 11 (5):769-780
To JP, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-a arabidopsis response regulator activity and
protein stability via two-component phosphorelay. Plant Cell 19 (12):3901-3914. doi:tpc.107.052662 [pii]
10.1105/tpc.107.052662
Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The clavata1 receptor-like kinase requires clavata3 for its assembly into a signaling complex that includes kapp and
a rho-related protein. Plant Cell 11 (3):393-406
Vandenbussche F, Petrasek J, Zadnikova P, Hoyerova K, Pesek B, Raz V, Swarup R, Bennett M, Zazimalova E, Benkova E, Van Der Straeten D (2010) The auxin influx
carriers aux1 and lax3 are involved in auxin-ethylene interactions during apical hook development in arabidopsis thaliana seedlings. Development 137 (4):597-606.
doi:137/4/597 [pii]
10.1242/dev.040790
Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R (2002) The homeobox gene brevipedicellus is a key
regulator of inflorescence architecture in arabidopsis. Proc Natl Acad Sci U S A 99 (7):4730-4735. doi:10.1073/pnas.072626099
072626099 [pii]
Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J (2000) Pin-formed 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127 (23):51575165
Vidaurre DP, Ploense S, Krogan NT, Berleth T (2007) Amp1 and mp antagonistically regulate embryo and meristem development in arabidopsis. Development 134
(14):2561-2567. doi:dev.006759 [pii]
10.1242/dev.006759
Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Muller A, Weiler EW, Piotrowski M (2001) Enzymatic characterization of the recombinant arabidopsis thaliana nitrilase
subfamily encoded by the nit2/nit1/nit3-gene cluster. Planta 212 (4):508-516
Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tor A, Zipfel C, de Wit PJ, Jones JD, Tor M, Thomma BP (2008) A
genome-wide functional investigation into the roles of receptor-like proteins in arabidopsis. Plant Physiol 147 (2):503-517. doi:pp.108.119487 [pii]
10.1104/pp.108.119487
Wang G, Long Y, Thomma BP, de Wit PJ, Angenent GC, Fiers M (2010) Functional analyses of the clavata2-like proteins and their domains that contribute to clavata2
specificity. Plant Physiol 152 (1):320-331. doi:pp.109.148197 [pii]
10.1104/pp.109.148197
Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G, Hooykaas P, Offringa R (2005) Maintenance of embryonic auxin distribution for apical-basal patterning by
pin-formed-dependent auxin transport in arabidopsis. Plant Cell 17 (9):2517-2526. doi:tpc.105.034637 [pii]
10.1105/tpc.105.034637
Wenkel S, Emery J, Hou BH, Evans MMS, Barton MK (2007) A feedback regulatory module formed by little zipper and hd-zipiii genes. Plant Cell 19 (11):3379-3390.
doi:10.1105/tpc.107.055772
Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of monopteros and pin-formed1 expression during leaf vein pattern formation in arabidopsis thaliana. Plant J 49
(3):387-398. doi:TPJ2977 [pii]
10.1111/j.1365-313X.2006.02977.x
Williams RW, Clark SE, Meyerowitz EM (1999) Genetic and physical characterization of a region of arabidopsis chromosome 1 containing the clavata1 gene. Plant Mol Biol
39 (1):171-176
Williams RW, Wilson JM, Meyerowitz EM (1997) A possible role for kinase-associated protein phosphatase in the arabidopsis clavata1 signaling pathway. Proc Natl Acad
Sci U S A 94 (19):10467-10472
Wu G, Lin WC, Huang T, Poethig RS, Springer PS, Kerstetter RA (2008) Kanadi1 regulates adaxial-abaxial polarity in arabidopsis by directly repressing the transcription of
asymmetric leaves2. Proc Natl Acad Sci U S A 105 (42):16392-16397. doi:0803997105 [pii]
10.1073/pnas.0803997105
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of mir156 and mir172 regulates developmental timing in arabidopsis. Cell 138
(4):750-759. doi:10.1016/j.cell.2009.06.031
Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of scarecrow function reveals a radial patterning mechanism common to root
and shoot. Development 127 (3):595-603
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis knoxi proteins activate cytokinin biosynthesis. Curr Biol 15
(17):1566-1571. doi:S0960-9822(05)00844-4 [pii]
10.1016/j.cub.2005.07.060
Yao X, Wang H, Li H, Yuan Z, Li F, Yang L, Huang H (2009) Two types of cis-acting elements control the abaxial epidermis-specific transcription of the mir165a and
mir166a genes. FEBS Lett 583 (22):3711-3717. doi:S0014-5793(09)00868-0 [pii]
10.1016/j.febslet.2009.10.076
Zhao L, Kim Y, Dinh TT, Chen X (2007) Mir172 regulates stem cell fate and defines the inner boundary of apetala3 and pistillata expression domain in arabidopsis floral
meristems. Plant J 51 (5):840-849. doi:TPJ3181 [pii]
10.1111/j.1365-313X.2007.03181.x
Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in arabidopsis: Involvement of
cytochrome p450s cyp79b2 and cyp79b3. Genes Dev 16 (23):3100-3112. doi:10.1101/gad.1035402
Zhong R, Demura T, Ye ZH (2006a) Snd1, a nac domain transcription factor, is a key regulator of secondary wall synthesis in fibers of arabidopsis. Plant Cell 18 (11):31583170. doi:tpc.106.047399 [pii]
10.1105/tpc.106.047399
Zhong R, Richardson EA, Ye ZH (2007a) Two nac domain transcription factors, snd1 and nst1, function redundantly in regulation of secondary wall synthesis in fibers of
arabidopsis. Planta 225 (6):1603-1611. doi:10.1007/s00425-007-0498-y
Zhong RQ, Demura T, Ye ZH (2006b) Snd1, a nac domain transcription factor, is a key regulator of secondary wall synthesis in fibers of arabidopsis. Plant Cell 18
(11):3158-3170. doi:10.1105/tpc.106.047399
Zhong RQ, Richardson EA, Ye ZH (2007b) The myb46 transcription factor is a direct target of snd1 and regulates secondary wall biosynthesis in arabidopsis. Plant Cell 19
(9):2776-2792. doi:10.1105/tpc.107.053678
Zhong RQ, Taylor JJ, Ye ZH (1999) Transformation of the collateral vascular bundles into amphivasal vascular bundles in an arabidopsis mutant. Plant Physiol 120 (1):53-64
Zhong RQ, Ye ZH (1999) Ifl1, a gene regulating interfascicular fiber differentiation in arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11 (11):21392152
Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice high-tillering dwarf1 encoding an ortholog of arabidopsis max3 is required
for negative regulation of the outgrowth of axillary buds. Plant J 48 (5):687-698. doi:TPJ2916 [pii]
10.1111/j.1365-313X.2006.02916.x