* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Cell Basics
Tissue engineering wikipedia , lookup
Extracellular matrix wikipedia , lookup
Cell growth wikipedia , lookup
Signal transduction wikipedia , lookup
Cell nucleus wikipedia , lookup
Cell culture wikipedia , lookup
Cell encapsulation wikipedia , lookup
Cellular differentiation wikipedia , lookup
Cell membrane wikipedia , lookup
Cytokinesis wikipedia , lookup
Organ-on-a-chip wikipedia , lookup
Characteristics of Life Carbon based Water Respiration Stimulus Energy source Reproduction Adaptation Organization of multi-celled living things Cells tissues organs system organism Single celled organisms Can live alone or in colonies 6 Kingdoms Animal Plant Fungi Bacteria – prokaryotes (simple celled) Moneran – eukaryotes (complex celled) Archea – extremophiles Microscope 101 Robert Hooke – 1665 3 lens in gold leather case poor quality (compared to a cheap microscope today) looked at cork, saw plant cells Anton van Leewenhoek – 1700 Improved accuracy and quality of lens Ground lenses himself First to name bacteria (animacuoles) Saw red blood cells Compound Microscope Use either natural light or lamp Magnify power determined by multiplying of eye pieced and objective lens Eye piece (10) * Objective lens (30) = 300 magnifying power over eyesight Scanning Electron Microscope – 1970’s Beam electrons over the surface 3D picture of surface Bt only get the surface 60,000 magnification Scanning Tunneling Microscope – 1980’s Beam electrons See atoms at objects surface Get a 3D image, still just a surface image 100 million magnification Transmission Election Microscope – 1990’s Beam electrons through specimen, denser portions allow fewer electrons through, give a darker image to the denser sections Get a 2D image (a cellular x-ray) 100,000’s times New electron microscopes give greater detail, but do destroy the sample Cell Theory / Cell History William of Ockham - 1347 English Franciscan monk and philosopher Ockham’s Razor Plurality should not be assumed without necessity In otherwords, keep it simple Robert Hooke – 1665 Used very simple microscope, poor quality, little detail Only saw cell walls Saw simple box structures, called them cells o (pg 176. in text for picture of what Hooke saw) Francesco Redi – 1668 Before Redi people believed in spontaneous generation o Living things could come from dead/non-living things Ex. maggots born from rotten meat Redi proved that living things can only come from other living things Put out three jars with meat in them o One open top, one with a cork, one with cheese cloth (allowed air to get to meat, but not the flies) o Noticed flies hanging around o Meat went rotten in all jars o Only maggots formed on the open jars At time most educated people still did not understand disease or that microbes came from other living microbes * Many people still believed in spontaneous generation for microbes * Something in the broth would make it go bad, they didn't think that microbes did it Anton van Leeuwenhoek - 1700 Improved lens for microscopes Expanded knowledge of microbes Looked at pond water (saw microbes), blood (saw red blood cells), cheek cells Lazzarro Spallanzani - 1768 Showed that microbes are in the air and they could be killed by boiling Boiled two flasks, sealed one and left the other opened Sealed = clear Opened = cloudy Matthias Schleiden (1830’s) Observed plants All plants made up of cells Theodore Schwann (1830’s) Observed animals All animals made up of cells Louis Pasteur (1850’s) Proved all living things come from living things Also helped to prove that microbes caused disease & ruined food Found out that if heated liquids like (milk, apple cider, and wine) that the flavor didn’t change, but that the microbes that ruined the food were dead (pasteurization) Used flasks with curved ends to show that microbes ruined food, microbes were every where, and that only came from other microbes o Curved flasks were open to the air o Boiled to kill microbes o Microbes trapped in curve o Took some flasks and ran both into curve o Later those tipped flasks had microbes o There are still open flasks that are free of microbes 150+ years later Robert Koch - 1880’s Very methodical Improved culturing techniques Proved how disease was transmitted Anthrax TB Tyhpus Cell Theory 1. All organisms are composed from cells (One or more) 2. Cells are the basic unit of organization of organisms 3. All cells come from pre-existing cells Types of Cells Prokaryotes – Simple Cells Bacteria (Monerans) Lack internal membrane bound structures (organelles) Has no nuclear membrane Eukaryotes – Complex cells Found in multicellular organisms (plants, animals, fungi) Protists (algae, yeast, paramecium, etc) Contain membrane bound structures (organelles) Has a nuclear membrane Archea – Extremophiles Extreme loving single celled organisms Sort of a mix between prokaryotes and eukaryotes So different from both that are put into own category (own kingdom!) Animal Cell Notes Important chemicals needed for the Cell to Survive Lipids = fats Carbohydrates = starch/stored energy Glucose = sugar Proteins = energy source, enzyme (starts reactions) Organelles (“cellular organs”) 1. Membrane 2. Solid (mostly) 3. Microtubular (structure) Inclusions Extra stuff in the cell o Storage substances (ex. lipid droplets) o Waste materials o Products of the cell o Pigment granules o Foreign materials (ex. viruses) Major Organelles Cytoplasm – Goo stuff floats around in Fluid to jelly-like material that fills the cell Within the cell membrane EXCLUDING the nucleus Dissolved in the cytoplasm are simple sugars (ex. glucose), amino acids, O2, CO2, ions, and large carbohydrates Suspended in cytoplasm: inclusions & organelles Nucleus – Brain of the Cell Usually found in central part of cell Contains Chromatin o DNA (genetic material) and proteins o Genes (hereditary units) of the cell Nuclear Membrane – Protects Nucleus Double membrane around nucleus Has pores in it, allows materials to pass in and out of nucleus Nucleolus – Ribosome Maker Found within Nucleus Makes ribosomes Centrioles Present ONLY during cell division Microtubules that act Endoplasmic Reticulum (ER) – Structure/Surface Provider Consists of highly folded sheets of membrane suspended Folded to form loose sheets or tubes Provides some physical support for cell Folds create inner compartments (cisternae) which are used to store some of the produces synthesized by the cell Two types: o Rough ER o Has ribosomes on outer surface (hence “rough” ER) Provides stable place where ribosomes can attach and make proteins Smooth ER Outer surface provides a tremendous amount of surface area for synthesis (creating) of lipids and carbohydrates Ribosome – Protein Producer Solid spherical particles of RNA (single strand of genetic info) and protein Frequently found on outer surface of ER Some are free floating Provides location for protein synthesis, ESSENTIAL for this purpose Ribosomes stabilize some of the molecules requires for protein synthesis Contain some of the enzymes needed for cellular respiration and electron transport Lysosomes - Garbage Men of Cell Sacs made of a single membrane (balloon-like) Contain hydrolytic enzymes that can break down large molecules into smaller ones Enzymes destroy foreign material picked up by cell Also destroys worn out or injured cells (helps the cell “self destruct”) Vacuoles – Storage Containers Sacs made up of a single membrane Store things in the cell o Food and enzymes (for later use) o Waste products made by cell Golgi Apparatus (Golgi Complex) – Cells Mailman Stacks of discs (like pancakes) Always found close to ER and cell membrane Provide temporary storage to newly synthesized materials Vesicles – small sacs at the end of the Golgi stacks o Contain a single membrane o Can modify proteins into packages ready to be sent where they are needed Modifies and sends proteins where they need to be o Synthesis begins in ER moves to golgi apparatus moves to buds sent out of cell Mitochondria – Energy Releaser Hollow structures, oval or rod shaped, double layer of membrane Inner membrane has intricate folds that project into a hollow cavity o Provides more surface area Site of cellular respiration & electron transport Release large amounts of energy o Can be released for immediate use or stored as ATP (high energy compound) ATP = adenosine triphosphate Cellular Respiration (How the cell breathes & eats) Break down nutrients to CO2 and water Allows cell to take in different gases and release waste gases Major energy activity (How cells get some of their energy) C6H12O6 +6O2 6H20 + energy (glucose) Electron Transport Chain Uses part of the energy released in cellular respiration to form ATP (high energy compounds) Use a bit of energy to make “super battery cells” used in almost all cellular functions Cytoskeleton Network that provides structure and strength to cell Give it rigidity and provide for cell movement o Microfilaments – solid rods/fibers that provide structure o Microtubules – hollow tubes that provide structure, allow stuff to flow through tube Cilia and Flagella How single-celled organisms move Thread-like projections out of cell (microtubules filled with cytoplasm) Basically the same thing, only difference is the amount o Cilia - Lots of little threads, wave-like motion o Flagella - One single large thread, whip-like motion Plant Cell Notes Contain all of the same organelles as animals cells with a few differences NO CENTRIOLES! Cell Wall Has pores Provides structure and rigidity to plant cells Made up of cellulose Plastids Often contain other pigments the cell uses for energy production Used to store energy (like a vacuole) Some contain starch or lipids These other plastids are what we see when the leaves change color Chloroplasts Capture light and produce food Where photosynthesis takes place Chlorophyll o Actual pigment that captures light energy o Green color