Download Biotech

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Polycomb Group Proteins and Cancer wikipedia , lookup

Epigenetics of neurodegenerative diseases wikipedia , lookup

Human genome wikipedia , lookup

Zinc finger nuclease wikipedia , lookup

Gene therapy wikipedia , lookup

Bisulfite sequencing wikipedia , lookup

Genealogical DNA test wikipedia , lookup

Epigenetics in learning and memory wikipedia , lookup

Primary transcript wikipedia , lookup

Metagenomics wikipedia , lookup

Gel electrophoresis of nucleic acids wikipedia , lookup

Gene expression profiling wikipedia , lookup

Epigenetics of diabetes Type 2 wikipedia , lookup

United Kingdom National DNA Database wikipedia , lookup

Nucleosome wikipedia , lookup

DNA damage theory of aging wikipedia , lookup

Minimal genome wikipedia , lookup

Epigenetics of human development wikipedia , lookup

Genome (book) wikipedia , lookup

Cancer epigenetics wikipedia , lookup

Genome evolution wikipedia , lookup

Cell-free fetal DNA wikipedia , lookup

Nucleic acid analogue wikipedia , lookup

Genomics wikipedia , lookup

Nucleic acid double helix wikipedia , lookup

Point mutation wikipedia , lookup

Gene wikipedia , lookup

Non-coding DNA wikipedia , lookup

DNA supercoil wikipedia , lookup

Plasmid wikipedia , lookup

Epigenomics wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Deoxyribozyme wikipedia , lookup

DNA vaccination wikipedia , lookup

Genome editing wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Genomic library wikipedia , lookup

Molecular cloning wikipedia , lookup

Cre-Lox recombination wikipedia , lookup

Extrachromosomal DNA wikipedia , lookup

No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup

Designer baby wikipedia , lookup

Genetic engineering wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

Helitron (biology) wikipedia , lookup

Microevolution wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

History of genetic engineering wikipedia , lookup

Transcript
Biotechnology
2007-2008
A Brave New World
Bacterial genome
• Single circular chromosome
– haploid
– naked DNA
• no histone proteins
– ~4 million base pairs
• ~4300 genes
• 1/1000 DNA in eukaryote
Transformation
• Bacteria are opportunists
– pick up naked foreign DNA wherever it
may be hanging out
• surface transport proteins specialized for the
uptake of naked DNA
mix heat-killed
pathogenic &
non-pathogenic
bacteria
– incorporate the DNA bits into their own
chromosome
• express new genes
• transformation
• form of recombination
mice die
Plasmids
• Small supplemental circles of DNA
• 5000 - 20,000 base pairs
• self-replicating
– carry extra genes
• 2-30 genes
• genes for antibiotic resistance
– can be exchanged between bacteria
• bacterial sex!!
• rapid evolution
– can be imported from
environment
How can plasmids help us?
• A way to get genes into bacteria easily
– insert new gene into plasmid
– insert plasmid into bacteria = vector
– bacteria now expresses new gene
• bacteria make new protein
gene from
other organism
cut DNA
plasmid
+
recombinant
plasmid
vector
glue DNA
transformed
bacteria
Biotechnology
• Plasmids used to insert new genes into bacteria
cut DNA
gene we
want
like what?
…insulin
…HGH
…lactase
cut plasmid DNA
ligase
recombinant
plasmid
insert “gene we want”
into plasmid...
“glue” together
How do we cut DNA?
• Restriction enzymes
– restriction endonucleases
– evolved in bacteria to cut up foreign DNA
• “restrict” the action of the attacking organism
• protection against viruses
& other bacteria
– bacteria protect their own DNA by methylation & by not
using the base
sequences recognized
by the enzymes
in their own DNA
Madam I’m Adam
Restriction enzymes
• restriction site
– symmetrical “palindrome”
– produces protruding ends
• sticky ends
• will bind to any complementary DNA
CTGAATTCCG
GACTTAAGGC

– cut DNA at specific sequences

• Action of enzyme
CTG|AATTCCG
GACTTAA|GGC
• Many different enzymes
– named after organism they are found in
• EcoRI, HindIII, BamHI, SmaI
Restriction enzymes
• Cut DNA at specific sites
– leave “sticky ends”
restriction enzyme cut site
GTAACGAATTCACGCTT
CATTGCTTAAGTGCGAA
restriction enzyme cut site
GTAACG AATTCACGCTT
CATTGCTTAA GTGCGAA
Sticky ends
• Cut other DNA with same enzymes
– leave “sticky ends” on both
– can glue DNA together at “sticky ends”
GTAACG AATTCACGCTT
CATTGCTTAA GTGCGAA
gene
you want
GGACCTG AATTCCGGATA
CCTGGACTTAA GGCCTAT
chromosome
want to add
gene to
GGACCTG AATTCACGCTT
CCTGGACTTAA GTGCGAA
combined
DNA
Sticky ends help glue genes together
cut sites
gene you want
cut sites
TTGTAACGAATTCTACGAATGGTTACATCGCCGAATTCACGCTT
AACATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGTGCGAA
AATTCTACGAATGGTTACATCGCCG
GATGCTTACCAATGTAGCGGCTTAA
sticky ends
cut sites
isolated gene
chromosome want to add gene to
AATGGTTACTTGTAACG AATTCTACGATCGCCGATTCAACGCTT
TTACCAATGAACATTGCTTAA GATGCTAGCGGCTAAGTTGCGAA
DNA ligase joins the strands
sticky ends stick together
Recombinant DNA molecule
chromosome with new gene added
TAACGAATTCTACGAATGGTTACATCGCCGAATTCTACGATC
CATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGATGCTAGC
Why mix genes together?
• Gene produces protein in different
organism or different individual
human insulin gene in bacteria
TAACGAATTCTACGAATGGTTACATCGCCGAATTCTACGATC
CATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGATGCTAGC
“new” protein from organism
aa
bacteria
aa aa aa aa
ex: human insulin from bacteria
aa aa
aa aa aa
human insulin
Copy (& Read) DNA
• Transformation
– insert recombinant plasmid
into bacteria
– grow recombinant bacteria in agar cultures
• bacteria make lots of copies of plasmid
• “cloning” the plasmid
– production of many copies of inserted gene
– production of “new” protein
• transformed phenotype
DNA
 RNA  protein  trait
Grow bacteria…make more
transformed
gene from
other organism
bacteria
recombinant
plasmid
+
vector
plasmid
grow
bacteria
harvest (purify)
protein
Uses of genetic engineering
• Genetically modified organisms (GMO)
– enabling plants to produce new proteins
• Protect crops from insects: BT corn
– corn produces a bacterial toxin that kills corn borer
(caterpillar pest of corn)
• Extend growing season: fishberries
– strawberries with an anti-freezing gene from flounder
• Improve quality of food: golden rice
– rice producing vitamin A
improves nutritional value
Green with envy??
Jelly fish “GFP”
Transformed vertebrates