* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Environmental and genetic interaction
Human genome wikipedia , lookup
Polycomb Group Proteins and Cancer wikipedia , lookup
DNA methylation wikipedia , lookup
Gene therapy wikipedia , lookup
Pharmacogenomics wikipedia , lookup
Non-coding DNA wikipedia , lookup
Cancer epigenetics wikipedia , lookup
Bisulfite sequencing wikipedia , lookup
Genomic imprinting wikipedia , lookup
Gene expression profiling wikipedia , lookup
Transgenerational epigenetic inheritance wikipedia , lookup
Epigenetics wikipedia , lookup
Epigenetics in stem-cell differentiation wikipedia , lookup
Genome evolution wikipedia , lookup
Epigenomics wikipedia , lookup
Epigenetics of neurodegenerative diseases wikipedia , lookup
Gene expression programming wikipedia , lookup
Genetic testing wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Medical genetics wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Behavioral epigenetics wikipedia , lookup
Genome editing wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Population genetics wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Epigenetics of diabetes Type 2 wikipedia , lookup
Epigenetics in learning and memory wikipedia , lookup
Human genetic variation wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Public health genomics wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Genetic engineering wikipedia , lookup
Quantitative trait locus wikipedia , lookup
Genome (book) wikipedia , lookup
History of genetic engineering wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Behavioural genetics wikipedia , lookup
Designer baby wikipedia , lookup
Genetics and Prenatal Development D. Messinger, Ph.D. Messinger Quantitative and molecular genetics Quantitative genetics: – Quantifies the strength of genetic and non-genetic factors Genetics believed to play role in all traits non-genetic influences also important in gene-environment interactions, environment may have more/less impact on those who are/are not genetically susceptible Molecular genetics: – – Identification of specific genes involved in susceptibility Some individual genes have been identified in liability to mental disorders; some also associated with variations in response to environmental hazards or medication Gangi Basics Genes – – Bits of DNA in each cell information on cell functioning & reproduction Chromosomes – – – Larger groupings of DNA All non-gamete cells have 23 pairs of chromosomes Half of each pair came from each parent Messinger Chromosomes Ordered by karotyping In vitro Messinger Human genome project identify the ~30,000 genes in human DNA, determine the sequences of the 3 billion chemical base pairs that make up human DNA, 99% (of nucleotide bases) are the same in all people Messinger Detailed description Messinger Disadvantages of the genes-asblueprint metaphor Genes are in a primarily liquid nucleus in a primarily liquid cell surrounded by other cells in a primarily liquid uterine environment – Without an “environment,” genes are just wound up nucleic acid From a lump of jelly to an organism – – How do genes actually work? What is the role of “junk” DNA? Messinger Genomes to Life Project - Proteomics Identify the protein machines that carry out critical life functions and the gene regulatory networks that control these machines Messinger Terms Phenotype – Observable trait “Phenotyping” The broader phenotype (autism) Genotype – Genetic pattern associated with the phenotype Messinger Polygenic inheritance – not blueprint inheritance - is the rule Multiple genes influence most traits Sign of polygenic inheritance is range in phenotype rather than either/or – – – skin/eye/hair color, height, baldness, personality Reaction Range Potential variability in expression of a trait Such traits may also be susceptible to environmental influence Messinger How are genes a blueprint? “The DNA sequence (e.g., ATTCCGGA) . . . spells out the exact instructions required to create a particular organism with its own unique traits.” A metaphor which describes cases in which there is a specific correspondence between genotype and phenotype Messinger Blueprint-like modes of genetic transmission Dominant-recessive – Single gene or Mendellian Specific genetic defects can be deadly or disabling sickle cell, phenylkitenuria (but see Knox & Messinger, 1958), etc. Sex-linked (23rd chromosome) Messinger Dominant-Recessive Inheritance Traits are transmitted as separate units Autosomes - 22 pairs – – Non-sex chromosomes One pair from each parent When 2 competing traits are inherited – Only 1 trait is expressed Dominant trait Recessive trait Messinger Dominant-Recessive Inheritance Carrier Father (Nr) + Carrier Mother (Nr) Normal (NN) Carrier (Nr) Carrier (Nr) Affected (rr) Traits are transmitted as separate units •25% risk of inheriting a “double-dose” of r genes •which may cause a serious birth defect •25% chance of inheriting two N’s •thus being unaffected •50% chance of being aMessinger carrier as both parents are Sex-linked inheritance 23rd chromosomal pair Male = XY (Missing an arm) – one Y branch not matched – so allele on corresponding X branch is expressed Female = XX – each branch is matched Messinger Sex-linked inheritance Male’s “x” inherited from mother – – Women are carriers Males represented disproportionately in sex linked disorders Color-blindness, hemophilia Messinger Behavioral genetics The influence of genetic and environmental factors be distinguished and the influence of each can be quanitified using behavioral genetic methods (Plomin) Messinger Twin Studies Monozygotic vs Dizygotic: human studies of genetic versus environment Messinger Twin studies Identical (MZ) twins share 100% of their genes – Fraternal (DZ) twins share 50% of their genes – genetic duplicates. on average Both types of twins have similar environments . . . Greater behavioral similarity of identical twins indexes greater genetic influence • http://www.psych.umn.edu/psylabs/mtfs/special.htm Messinger Modeling differences between correlations A (additive genetics) C (common environment) and E (unique environment); ACE Model. The correlation we observe between MZ twins provides an estimate of A + C . Dizygous (DZ) twins have a common shared environment, and share on average 50% of their genes: so the correlation between DZ twins is a direct estimate of ½A + C . rmz = A + C rdz = ½A + C Where rmz and rdz are simply the correlations of the trait in MZ and DZ twins respectively. Twice difference between MZ and DZ twins gives us A: the additive genetic effect C is simply the MZ correlation minus our estimate of A. The random (unique) factor E is estimated directly by how much the MZ twin correlation deviates from 1. difference between the MZ and DZ correlations is due to a halving of the genetic similarity… So additive genetic effect 'A' is simply twice the difference between the MZ and DZ correlations: A = 2 (rmz – rdz) As the MZ correlation reflects the full effect of A and C, E can be estimated by subtracting this correlation from 1 E = 1 – rmz Finally, C can be derived: C = rmz – A = 2 rdz – rmz http://en.wikipedia.org/wiki/Twin_study Messinger Sources of Variance in Behavior Genetic (heritability) Environmental Gene x environment interaction Error Messinger No genetic influence Messinger Genetic influence Behavior Similarity Correlation 60 50 40 30 Twin 1 Twin 2 20 10 0 Dizygotic Monozygotic Genetic Relatedness Messinger “Most, if not all, reliably measured psychological traits, normal and abnormal, are substantively influenced by genetic factors.” Bouchard, T. J. (2004). "Genetic Influence on Human Psychological Traits: A Survey." Current Directions in Psychological Science 13(4): 148-151. Messinger Estimates of genetic and environmental influence Proportional in samples – Greater environmental variation Will – – minimize genetic variation E.g. Poverty Greater genetic variation Will – minimize environmental variation E.g. Downs Syndrome Messinger Gene * Environment interactions – Genetic effects on alcohol use are greater in nonreligious than religious households – Why? Genetic effects on seeking specific environments – Identical twins find similar friends Identical twins treated more similarly (or differently) than fraternal twins? Messinger Questions Why might adoption studies maximize estimates of genetic influence? Can genetic effects increase with time? – How? Messinger Transactional perspective on gene*environment interface “It is not nature vs. nurture, but the interaction of nature and nurture that drives development.” Urie Bronfrenbrenner Messinger Gene*Environment Interaction Messinger Gene * environment interactions Gottlieb, 2003 Messinger “What will it take to make behavioral genetics truly developmental?” An analysis of the bi-directional relations from gene action to the external environment over the life course, including the prenatal period. Gottlieb, G. (2003 ). Human Development 46(6): 337-355. Messinger Measured Gene-Environment Interactions and Mechanisms Promoting Resilient Development . (Kim-Cohen & Gold, 2009) Individuals carrying “protective” allele have lower levels of psychopathology than those that posses the “vulnerable” allele In maltreated children: – “short” (low) serotonin transporters (5-HTT gene) only see greater risk for depression in high-stress conditions. – – No effect in individuals not exposed to risk – – Dunedin Longitudinal Study (Caspi et al., 2003) (Caspi & Moffitt, 2006) Replication debate Fernandez Contextual Determinants of Gene Function Gene = sequence of DNA Transcription = enzymes “read” DNA Environment around DNA makes it possible to “read” DNA Epigenetic – “in addition to genetic” – Influences that determine expression without altering the DNA Gangi Messinger Several epigenetic mechanisms alter gene activity in neurons, with potentially important effects on brain function and behavior. Histone acetylation tends to promote gene activity, whereas histone methylation and DNA methylation tend to inhibit it. Which is better? Messinger Environmental Influences on Gene Activity In rodents: – – Low maternal care elevated methylation Prenatal exposure to chronic stress increased methylation Less nurturing mothering leads to poorer stress response in rat pups Fewer corticosterone receptors Linked to DNA methylation Enzymes reverse methylation, improve receptor numbers – Szyf & Meany (2004) Gangi Epigenetics in Rodents Champagne’s extension to later mothering – Less mothering attention -> Greater methylation Roth and Sweatt (2009) – – Stressed mothers spend less time nurturing Lower BDNF hormone -> Greater methylation - > Lower neural growth Less mothering attention in the next generation Linked to anxiety in mice, responds to antidepressants Miller and Sweatt (2007)- Inhibition of methylation detrimental to memory Nestler et al. (2010) Cocaine exposure – Higher acetylation and methylation of histones Stimulates reward circuitry Mattson Methylation can mask the transcription of certain genes Messinger Epigenetics in Humans – – Antenatal depression and anxiety higher methylation Suicide victims elevated methylation in hippocampus Szyf & McGowan (2009) More methyl groups in glucocorticoid receptor genes of abused – Umbilical cord blood, higher methylation and higher later cortisol, increased susceptibility to stress (Oberlander et al., 2008) Greater discordance in gene expression in older twins – associated with greater differences in methylation – The Seductive Allure of Behavioral Epigenetics. Mattson Miller (2010) True or false? Environmental factors for generation 1 can influence gene expression in generation 2 Messinger