Download The Cell Membrane

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Lipid raft wikipedia , lookup

Cell culture wikipedia , lookup

Mechanosensitive channels wikipedia , lookup

Cellular differentiation wikipedia , lookup

Cell nucleus wikipedia , lookup

Cell cycle wikipedia , lookup

Cell growth wikipedia , lookup

Cell encapsulation wikipedia , lookup

Extracellular matrix wikipedia , lookup

Membrane potential wikipedia , lookup

Thylakoid wikipedia , lookup

Lipid bilayer wikipedia , lookup

Model lipid bilayer wikipedia , lookup

Mitosis wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

JADE1 wikipedia , lookup

Cytosol wikipedia , lookup

Signal transduction wikipedia , lookup

Cytokinesis wikipedia , lookup

Cell membrane wikipedia , lookup

Endomembrane system wikipedia , lookup

List of types of proteins wikipedia , lookup

Transcript
AP Biology
Cell and Cell Parts Reivew videos
 Inner Life of a Cell (with dramatic music)
 Inner Life of a Cell (technically narrated)
 Human skin cells, up close and personal

Dust mites (just for fun)
 Through the virtual cell (in cell submarine
with all of the key cellular processes)
AP Biology
What is the purpose of all this stuff?
AP Biology
Phospholipids
 Phosphate head

“attracted to water”
hydrophilic
 Fatty acid tails

Phosphate
hydrophobic
 Arranged as a bilayer
Fatty acid
“repelled by water”
Aaaah,
one of those
structure–function
examples
AP Biology
Arranged as a Phospholipid bilayer
 Serves as a 5-10 nm wide cellular border
sugar
H 2O
salt
polar
hydrophilic
heads
nonpolar
hydrophobic
tails
impermeable to polar molecules
waste
AP Biology
lipids
Permeability to polar molecules?
 Membrane becomes semi-permeable via
protein channels

specific channels allow specific material
across cell membrane
inside cell
NH
AP
Biology
3
salt
H 2O
aa
sugar
outside cell
Cell membrane is more than lipids…
 Transmembrane proteins embedded in
phospholipid bilayer

create semi-permeabe channels
lipid bilayer
membrane
AP Biology
protein channels
in lipid bilyer membrane
Why are
proteins the perfect
molecule to build structures
in the cell membrane?
AP Biology
2007-2008
Classes of amino acids
What do these amino acids have in common?
nonpolar & hydrophobic
AP Biology
Classes of amino acids
What do these amino acids have in common?
I like the
polar ones
the best!
AP Biology
polar & hydrophilic
Proteins domains anchor molecule
 Within membrane

Polar areas
of protein
nonpolar amino acids
 hydrophobic
 anchors protein
into membrane
 On outer surfaces of
membrane in fluid

polar amino acids
 hydrophilic
 extend into
AP Biology
extracellular fluid &
into cytosol
Nonpolar areas of protein
+
H
H+
Examples
Retinal
chromophore
NH2
aquaporin =
water channel in bacteria
Porin monomer
H 2O
b-pleated sheets
Bacterial
outer
membrane
Nonpolar
(hydrophobic)
a-helices in the
cell membrane
COOH
H++
H
Cytoplasm
proton pump channel
in photosynthetic bacteria
H O
AP Biology 2
function through
conformational change =
protein changes shape
Many Functions of Membrane Proteins
“Channel”
Outside
Plasma
membrane
Inside
Transporter
Enzyme
activity
Cell surface
receptor
Cell adhesion
Attachment to the
cytoskeleton
“Antigen”
AP Biology
Cell surface
identity marker
Membrane Proteins
 Proteins determine membrane’s specific functions

cell membrane & organelle membranes each have
unique collections of proteins
 Classes of membrane proteins:

peripheral proteins
 loosely bound to surface of membrane
 ex: cell surface identity marker (antigens)

integral proteins
 penetrate lipid bilayer, usually across whole membrane
 transmembrane protein
 ex: transport proteins
 channels, permeases (pumps)
AP Biology
Membrane is a collage of proteins & other molecules
embedded in the fluid matrix of the lipid bilayer
Glycoprotein
Extracellular fluid
Glycolipid
Phospholipids
Cholesterol
Peripheral
protein
AP Biology
Transmembrane
proteins
Cytoplasm
Filaments of
cytoskeleton
1972, S.J. Singer & G. Nicolson proposed Fluid Mosaic Model
Membrane carbohydrates
 Play a key role in cell-cell recognition

ability of a cell to distinguish one cell
from another
 antigens

AP Biology
basis for rejection of
foreign cells by
immune system
Any Questions??
AP Biology
Movement across the
Cell Membrane
AP Biology
2007-2008
Diffusion
 2nd Law of Thermodynamics
governs biological systems

universe tends towards disorder (entropy)
 Diffusion

AP Biology
movement from HIGH  LOW concentration
Simple Diffusion
 Move from HIGH to LOW concentration
“passive transport”
 no energy needed

AP Biology
diffusion
movement of water
osmosis
Facilitated Diffusion
 Diffusion through protein channels


channels move specific molecules across
cell membrane
facilitated = with help
no energy needed
open channel = fast transport
HIGH
LOW
AP Biology
“The Bouncer”
Active Transport
 Cells may need to move molecules against
concentration gradient



conformational shape change transports solute
from one side of membrane to other
protein “pump”
“costs” energy = ATP LOW conformational change
ATP
HIGH
AP Biology
“The Doorman”
Active transport
 Many models & mechanisms
ATP
AP Biology
ATP
antiport
symport
Getting through cell membrane
 Passive Transport

Simple diffusion
 diffusion of nonpolar, hydrophobic molecules
 lipids
 HIGH  LOW concentration gradient

Facilitated transport
 diffusion of polar, hydrophilic molecules
 through a protein channel
 HIGH  LOW concentration gradient
 Active transport

diffusion against concentration gradient
 LOW  HIGH


AP Biology
uses a proton pump
requires ATP
ATP
How Ion Pumps Maintain Membrane
Potential
 Two combined forces, collectively called
the electrochemical gradient, drive the
diffusion of ions across a membrane


A chemical force (the ion’s concentration
gradient)
An electrical force (the effect of the
membrane potential on the ion’s
movement)
AP Biology
© 2011 Pearson Education, Inc.
• An electrogenic pump is a transport protein
that generates voltage across a membrane
•
The sodium-potassium pump is the major
electrogenic pump of animal cells
•
The main electrogenic pump of plants, fungi,
and bacteria is a proton pump
 Electrogenic pumps help store energy that can be
used for cellular work
AP Biology
© 2011 Pearson Education, Inc.
Figure 7.20
ATP



Proton pump
H

CYTOPLASM
AP Biology


EXTRACELLULAR
FLUID

H
H
H


H
H
Figure 7.21
Cotransport: Coupled Transport by a
Membrane
Protein
ATP

H
H

H
Proton pump
H

H


H
H

H
Sucrose-H
cotransporter
Sucrose
AP Biology

Diffusion of H

Sucrose
Transport summary
simple
diffusion
facilitated
diffusion
active
transport
AP Biology
ATP
How about large molecules?
 Moving large molecules into & out of cell
through vesicles & vacuoles
 endocytosis

 phagocytosis = “cellular eating”
 pinocytosis = “cellular drinking”

AP Biology
exocytosis
exocytosis
Endocytosis
phagocytosis
fuse with
lysosome for
digestion
pinocytosis
non-specific
process
receptor-mediated
endocytosis
triggered by
molecular
signal
AP Biology
The Special Case of Water
post lab
AP Biology
2007-2008
Osmosis is just diffusion of water
 Water is very important to life,
so we talk about water separately
 Diffusion of water from
HIGH concentration of water to
LOW concentration of water

AP Biology
across a
semi-permeable
membrane
Concentration of water
 Direction of osmosis is determined by
comparing total solute concentrations

Hypertonic - more solute, less water

Hypotonic - less solute, more water

Isotonic - equal solute, equal water
water
AP Biology
hypotonic
hypertonic
net movement of water
Managing water balance
 Cell survival depends on balancing
water uptake & loss
AP Biology
freshwater
balanced
saltwater
1
Managing water balance
 Hypotonic

a cell in fresh water

high concentration of water around cell
 problem: cell gains water,
swells & can burst
KABOOM!
 example: Paramecium
 ex: water continually enters
Paramecium cell
 solution: contractile vacuole
 pumps water out of cell
ATP
 ATP

plant cells
No problem,
here
 turgid = full
 cell wall protects from bursting
AP Biology
freshwater
Pumping water out
 Contractile vacuole in Paramecium
ATP
AP Biology
2
Managing water balance
 Hypertonic
I’m shrinking,
a cell in salt water I’m shrinking!
 low concentration of water
around cell

 problem: cell loses water &
can die
 example: shellfish
 solution: take up water or
pump out salt
I

plant cells
will
survive!
 plasmolysis = wilt
 can recover
AP Biology
saltwater
3
Managing water balance
 Isotonic
That’s
perfect!

animal cell immersed in
mild salt solution

no difference in concentration of
water between cell & environment
 problem: none
 no net movement of water
flows across membrane equally, in
both directions
I could
 cell in equilibrium
be better…

 volume of cell is stable
 example:
blood cells in blood plasma
 slightly salty IV solution in hospital
AP Biology
balanced
1991 | 2003
Aquaporins
 Water moves rapidly into & out of cells

evidence that there were water channels
 protein channels allowing flow of water
across cell membrane
AP Biology
Peter Agre
Roderick MacKinnon
John Hopkins
Rockefeller
Do you understand Osmosis…
.05 M
.03 M
Plasmolysis
of onion
cells video
Cell (compared to beaker)  hypertonic or hypotonic
Beaker (compared to cell)  hypertonic or hypotonic
Which way does the water flow?  in or out of cell
AP Biology
Any Questions??
AP Biology
Review vids
 Crash Course Biology
 Another including transport
AP Biology