Download The Cell

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Tissue engineering wikipedia , lookup

Cytoplasmic streaming wikipedia , lookup

Cell cycle wikipedia , lookup

Extracellular matrix wikipedia , lookup

Cell growth wikipedia , lookup

Cellular differentiation wikipedia , lookup

Signal transduction wikipedia , lookup

Cell culture wikipedia , lookup

Cell encapsulation wikipedia , lookup

Flagellum wikipedia , lookup

Cytosol wikipedia , lookup

Cell membrane wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

JADE1 wikipedia , lookup

Cytokinesis wikipedia , lookup

Mitosis wikipedia , lookup

Cell nucleus wikipedia , lookup

Amitosis wikipedia , lookup

List of types of proteins wikipedia , lookup

Endomembrane system wikipedia , lookup

Transcript
Overview: The Importance of Cells
• All organisms are made of cells
• The cell is the simplest collection of matter
that can live
• Cell structure is correlated to cellular function
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-2
10 m
Human height
Length of some
nerve and
muscle cells
0.1 m
Chicken egg
Unaided eye
1m
1 cm
Frog egg
100 µm
Most plant and
animal cells
10 µm
Nucleus
Most bacteria
1 µm
100 nm
Mitochondrion
Smallest bacteria
Viruses
Ribosomes
10 nm
Proteins
Lipids
1 nm
Small molecules
0.1 nm
Atoms
Electron microscope
Measurements
1 centimeter (cm) = 10–2 meter (m) = 0.4 inch
1 millimeter (mm) = 10–3 m
1 micrometer (µm) = 10–3 mm = 10–6 m
1 nanometer (nm) = 10–3 µm = 10–9 m
Light microscope
1 mm
LE 6-3a
Brightfield (unstained
specimen)
50 µm
Brightfield (stained
specimen)
Phase-contrast
LE 6-3b
Differentialinterferencecontrast (Nomarski)
Fluorescence
50 µm
Confocal
50 µm
• Two basic types of electron microscopes (EMs)
are used to study subcellular structures
• Scanning electron microscopes (SEMs) focus a
beam of electrons onto the surface of a specimen,
providing images that look 3D
• Transmission electron microscopes (TEMs) focus
a beam of electrons through a specimen
• TEMs are used mainly to study the internal
ultrastructure of cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-4
Scanning electron
microscopy (SEM)
Transmission electron
microscopy (TEM)
Cilia
Longitudinal
section of
cilium
1 µm
Cross section
of cilium
1 µm
Concept 6.2: Eukaryotic cells have internal
membranes that compartmentalize their functions
• The basic structural and functional unit of every
organism is one of two types of cells: prokaryotic
or eukaryotic
• Only organisms of the domains Bacteria and
Archaea consist of prokaryotic cells
• Protists, fungi, animals, and plants all consist of
eukaryotic cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Comparing Prokaryotic and Eukaryotic Cells
• Basic features of all cells:
– Plasma membrane
– Semifluid substance called the cytosol
– Chromosomes (carry genes)
– Ribosomes (make proteins)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Prokaryotic cells have no nucleus
• In a prokaryotic cell, DNA is in an unbound region
called the nucleoid
• Prokaryotic cells lack membrane-bound organelles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-6
Pili
Nucleoid
Ribosomes
Plasma
membrane
Bacterial
chromosome
Cell wall
Capsule
0.5 µm
Flagella
A typical
rod-shaped
bacterium
A thin section through the
bacterium Bacillus
coagulans (TEM)
• Eukaryotic cells have DNA in a nucleus that is
bounded by a membranous nuclear envelope
• Eukaryotic cells have membrane-bound
organelles
• Eukaryotic cells are generally much larger than
prokaryotic cells
• The logistics of carrying out cellular metabolism
sets limits on the size of cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-7
Surface area increases while
Total volume remains constant
5
1
1
Total surface area
(height x width x
number of sides x
number of boxes)
6
150
750
Total volume
(height x width x length
X number of boxes)
1
125
125
Surface-to-volume
ratio
(surface area  volume)
6
1.2
6
• The plasma membrane is a selective barrier that
allows sufficient passage of oxygen, nutrients,
and waste to service the volume of the cell
• The general structure of a biological membrane is
a double layer of phospholipids
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-8
Outside of cell
Carbohydrate side chain
Hydrophilic
region
Inside of cell 0.1 µm
Hydrophobic
region
Hydrophilic
region
TEM of a plasma membrane
Phospholipid
Proteins
Structure of the plasma membrane
A Panoramic View of the Eukaryotic Cell
• A eukaryotic cell has internal membranes that
partition the cell into organelles
• Plant and animal cells have most of the same
organelles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-9a
ENDOPLASMIC RETICULUM (ER
Nuclear envelope
Flagellum
Rough ER
Smooth ER
NUCLEUS
Nucleolus
Chromatin
Centrosome
Plasma membrane
CYTOSKELETON
Microfilaments
Intermediate filaments
Microtubules
Ribosomes:
Microvilli
Golgi apparatus
Peroxisome
Mitochondrion
Lysosome
In animal cells but not plant cells:
Lysosomes
Centrioles
Flagella (in some plant sperm)
LE 6-9b
Nuclear
envelope
NUCLEUS
Nucleolus
Chromatin
Centrosome
Rough
endoplasmic
reticulum
Smooth
endoplasmic
reticulum
Ribosomes
(small brown dots)
Central vacuole
Golgi
apparatus
Microfilaments
Intermediate
filaments
Microtubules
CYTOSKELETON
Mitochondrion
Peroxisome
Chloroplast
Plasma
membrane
Cell wall
Plasmodesmata
Wall of adjacent cell
In plant cells but not animal cells:
Chloroplasts
Central vacuole and tonoplast
Cell wall
Plasmodesmata
Concept 6.3: The eukaryotic cell’s genetic instructions are
housed in the nucleus and carried out by the ribosomes
• The nucleus contains most of the DNA in a
eukaryotic cell
• Ribosomes use the information from the DNA to
make proteins
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Nucleus: Genetic Library of the Cell
• The nucleus contains most of the cell’s genes and
is usually the most conspicuous organelle
• The nuclear envelope encloses the nucleus,
separating it from the cytoplasm
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-10
Nucleus
Nucleus
1 µm
Nucleolus
Chromatin
Nuclear envelope:
Inner membrane
Outer membrane
Nuclear pore
Pore
complex
Rough ER
Surface of nuclear envelope
Ribosome
1 µm
0.25 µm
Close-up of nuclear
envelope
Pore complexes (TEM)
Nuclear lamina (TEM)
Ribosomes: Protein Factories in the Cell
• Ribosomes are particles made of ribosomal RNA
and protein
• Ribosomes carry out protein synthesis in two
locations:
– In the cytosol (free ribosomes)
– On the outside of the endoplasmic reticulum
(ER) or the nuclear envelope (bound
ribosomes)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-11
Ribosomes
ER
Cytosol
Endoplasmic
reticulum (ER)
Free ribosomes
Bound ribosomes
Large
subunit
Small
subunit
0.5 µm
TEM showing ER
and ribosomes
Diagram of
a ribosome
The Endoplasmic Reticulum: Biosynthetic Factory
• The endoplasmic reticulum (ER) accounts for
more than half of the total membrane in many
eukaryotic cells
• The ER membrane is continuous with the nuclear
envelope
• There are two distinct regions of ER:
– Smooth ER, which lacks ribosomes
– Rough ER, with ribosomes studding its surface
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Functions of Smooth ER
• The smooth ER
– Synthesizes lipids
– Metabolizes carbohydrates
– Stores calcium
– Detoxifies poison
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Functions of Rough ER
• The rough ER
– Has bound ribosomes
– Produces proteins and membranes, which are
distributed by transport vesicles
– Is a membrane factory for the cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Golgi Apparatus: Shipping and
Receiving Center
• The Golgi apparatus consists of flattened
membranous sacs called cisternae
• Functions of the Golgi apparatus:
– Modifies products of the ER
– Manufactures certain macromolecules
– Sorts and packages materials into transport
vesicles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-13
Golgi
apparatus
cis face
(“receiving” side of
Golgi apparatus)
Vesicles also
transport certain
proteins back to ER
Vesicles move
from ER to Golgi
Vesicles coalesce to
form new cis Golgi cisternae
0.1 µm
Cisternae
Cisternal
maturation:
Golgi cisternae
move in a cisto-trans
direction
Vesicles form and
leave Golgi, carrying
specific proteins to
other locations or to
the plasma membrane for secretion
Vesicles transport specific
proteins backward to newer
Golgi cisternae
trans face
(“shipping” side of
Golgi apparatus)
TEM of Golgi apparatus
Lysosomes: Digestive Compartments
• A lysosome is a membranous sac of hydrolytic
enzymes
• Lysosomal enzymes can hydrolyze proteins, fats,
polysaccharides, and nucleic acids
• Lysosomes also use enzymes to recycle
organelles and macromolecules, a process called
autophagy
Animation: Lysosome Formation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-14a
1 µm
Nucleus
Lysosome
Lysosome contains Food vacuole Hydrolytic
active hydrolytic
enzymes digest
fuses with
enzymes
food particles
lysosome
Digestive
enzymes
Plasma
membrane
Lysosome
Digestion
Food vacuole
Phagocytosis: lysosome digesting food
LE 6-14b
Lysosome containing
two damaged organelles
1 µm
Mitochondrion
fragment
Peroxisome
fragment
Lysosome fuses with
vesicle containing
damaged organelle
Hydrolytic enzymes
digest organelle
components
Lysosome
Digestion
Vesicle containing
damaged mitochondrion
Autophagy: lysosome breaking down
damaged organelle
Vacuoles: Diverse Maintenance Compartments
• Vesicles and vacuoles (larger versions of
vacuoles) are membrane-bound sacs with varied
functions
• A plant cell or fungal cell may have one or several
vacuoles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Food vacuoles are formed by phagocytosis
• Contractile vacuoles, found in many freshwater
protists, pump excess water out of cells
• Central vacuoles, found in many mature plant
cells, hold organic compounds and water
Video: Paramecium Vacuole
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-15
Central vacuole
Cytosol
Tonoplast
Nucleus
Central
vacuole
Cell wall
Chloroplast
5 µm
LE 6-16-1
Nucleus
Rough ER
Smooth ER
Nuclear envelope
LE 6-16-2
Nucleus
Rough ER
Smooth ER
Nuclear envelope
cis Golgi
Transport vesicle
trans Golgi
LE 6-16-3
Nucleus
Rough ER
Smooth ER
Nuclear envelope
cis Golgi
Transport vesicle
Plasma
membrane
trans Golgi
Concept 6.5: Mitochondria and chloroplasts
change energy from one form to another
• Mitochondria are the sites of cellular respiration
• Chloroplasts, found only in plants and algae, are
the sites of photosynthesis
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Chloroplasts: Capture of Light Energy
• Chloroplasts contain the green pigment
chlorophyll, as well as enzymes and other
molecules that function in photosynthesis
• Chloroplasts are found in leaves and other green
organs of plants and in algae
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-18
Chloroplast
Ribosomes
Stroma
Chloroplast
DNA
Inner and outer
membranes
Granum
1 µm
Thylakoid
Concept 6.6: The cytoskeleton is a network of fibers
that organizes structures and activities in the cell
• The cytoskeleton is a network of fibers extending
throughout the cytoplasm
• It organizes the cell’s structures and activities,
anchoring many organelles
• It is composed of three types of molecular
structures:
– Microtubules
– Microfilaments
– Intermediate filaments
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-20LE 6-21a
Microtubule
Microfilaments
0.25 µm
Cilia and Flagella
• Microtubules control the beating of cilia and
flagella, locomotor appendages of some cells
• Cilia and flagella differ in their beating patterns
Video: Chlamydomonas
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Video: Paramecium Cilia
LE 6-23aLE 6-27c
Direction of swimming
Motion of flagella
5 µm
Cell Walls of Plants
• The cell wall is an extracellular structure that
distinguishes plant cells from animal cells
• The cell wall protects the plant cell, maintains its
shape, and prevents excessive uptake of water
• Plant cell walls are made of cellulose fibers
embedded in other polysaccharides and protein
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
LE 6-28
Central
vacuole
of cell
Plasma
membrane
Secondary
cell wall
Primary
cell wall
Central
vacuole
of cell
Middle
lamella
1 µm
Central vacuole
Cytosol
Plasma membrane
Plant cell walls
Plasmodesmata
The Cell: A Living Unit Greater Than the Sum of Its Parts
• Cells rely on the integration of structures and
organelles in order to function
• For example, a macrophage’s ability to destroy
bacteria involves the whole cell, coordinating
components such as the cytoskeleton, lysosomes,
and plasma membrane
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
5 µm
LE 6-32