Download "PCR-based Species Identification and Gene Tagging"

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Molecular cloning wikipedia , lookup

Cre-Lox recombination wikipedia , lookup

Point mutation wikipedia , lookup

Quantitative trait locus wikipedia , lookup

Deoxyribozyme wikipedia , lookup

Genetically modified organism containment and escape wikipedia , lookup

Non-coding DNA wikipedia , lookup

Pathogenomics wikipedia , lookup

DNA barcoding wikipedia , lookup

Genomics wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

History of genetic engineering wikipedia , lookup

Cell-free fetal DNA wikipedia , lookup

Designer baby wikipedia , lookup

No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup

Metagenomics wikipedia , lookup

Genomic library wikipedia , lookup

Genetically modified crops wikipedia , lookup

SNP genotyping wikipedia , lookup

Genome editing wikipedia , lookup

Bisulfite sequencing wikipedia , lookup

Molecular Inversion Probe wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

Microevolution wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Helitron (biology) wikipedia , lookup

Microsatellite wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Transcript
"PCR-based Species Identification and
Gene Tagging"
Clint Magill, Ramasamy Perumal, C-L Yao
Department of Plant Pathology & Microbiology
TAMU
The Species to ID
• Downy Mildews
– Peronosclerospora sorghi
– P. maydis
– P. sacchari
– P. philippinensis*
– Sclerospora graminicola
– Peronospora sparsa
Primary Host
Sorghum
Maize
Sugarcane
all the above
pearl millet
rose
Common Characteristics of these Pathogens
•
•
•
Oomycetes-not true fungi
Asexual conidia if dew
Oospores from sexual
reproduction in crop residue
•
Obligate parasites
– Can’t grow in pure culture
– Can’t cross on demand
•
•
•
Species differ in host preference
and size of asexual “conidia”
Unknown genome size
No “marker” mutants or gene
maps
P. sorghi
• conidia-asexual spores
• antheridum and
oogonium forming in
leaf tissue
• Chenglin Yao, PhD
– China quarantine
service
– Protect against P.
philippinensis
– Classify via average
spore size in grain
samples?
– We have P. sorghi
Can we use pathogen DNA to detect the pathogen ?
Detection of infected progeny from a systemically infected maize
plant via dot-blot hybridization using genomic P. sorghi gDNA
Can we use DNA to differentiate closely related species?
Peronosclerosporsa DNA PvuI digests
sorghi-Thailand
sorghi-Thailand
maydis
sacchari-G-maize leaf
sacchari-Y-maize leaf
philip/cane leaf
sacchari/cane leaf
sorghi/maize leaf
sorghi-3 leaf
sorghi pt1/leaf
srghi pt-3
srghi pt-1
Probe: P. maydis gDNA
Probe Development- P. sorghi
Repeated Sequence Clones, Hybridized to P. sorghi gDNA
Probe Development- P. sorghi
Repeated Sequence Clones, Hybridized to P. maydis gDNA
Peronosclerosporsa DNA PvuI digests
sorghi-Thailand
sorghi-Thailand
maydis
sacchari-G-maize leaf
sacchari-Y-maize leaf
philip/cane leaf
sacchari/cane leaf
sorghi/maize leaf
sorghi-3 leaf
sorghi pt1/leaf
srghi pt-3
srghi pt-1
Probe: pMLY987
Peronosclerosporsa DNA PvuI digests
sorghi-Thailand
sorghi-Thailand
maydis
sacchari-G-maize leaf
sacchari-Y-maize leaf
philip/cane leaf
sacchari/cane leaf
sorghi/maize leaf
sorghi-3 leaf
sorghi pt1/leaf
srghi pt-3
srghi pt-1
Probe: pCLY83
Dot-blot sensitivity test-probe pMLY12
ng of DNA
P. sorghi pathotype 1
P. sorghi pathotype 3
pt1-Infected sorghum leaf
pt3-Infected sorghum leaf
“Botswana”-Infected maize leaf
Dot-Blot Hybridizations; proble pMLY12
P. sorghi
Colletotrichm graminicola
Infected seed, with glume
Acremonium strictum
Healthy seed, with glume
Fusarium moniliforme
Infected seed, no glume
Infected seed, glumes 40d
Healthy seed, no glume
Infected seed, no glumes 40d
How about converting clones to sequences for PCR?
P sorghi/Thailand-2
P sorghi/Thailand-1
P. maydis
P. sacchari/maize leaf
P. sacchari/maize leaf
P. phillip.//cane leaf
P. sacchari/cane leaf
maize leaf _Bots
infected leaf pt3
infected leaf pt1
P sorghi pt3
P sorghi pt1
Marker
1 kb
PCR using pCLY83 based primers
P sorghi/Thailand-2
P sorghi/Thailand-1
P. maydis
P. sacchari/maize leaf
P. sacchari/maize leaf
P. phillip.//cane leaf
P. sacchari/cane leaf
maize leaf _Bots
infected leaf pt3
infected leaf pt1
P sorghi pt3
P sorghi pt1
Marker
1 kb
PCR using pMLY12 based primers
This sequence has been used to develop Real Time
PCR primers & probe for rapid detection of SDM
Are other regions useful for species comparisons?
How about rDNA?
-present in many copies per genome
-extremely conserved in LS and SS regions
-sequences maintained by “concerted evolution”
-nontranscribed spacers between units
-internal spacers cut out after transcription
-data from other species suggest these
represent species-specific sequences
16s rDNA 5 1
26s rDNA
3
ITS1
2
ITS2
4
5.8s
Primer sites for conserved fungal ITS primers as described
by White, Lee, Bruns and Taylor
P. sacchari
P. maydis
P. sorghi Thai2
P. sorghi Thai1
P. sorghi pt1
P. sacchari
P. maydis
P. sorghi Thai2
P. sorghi Thai1
P. sorghi pt1
P. sacchari
P. maydis
P. sorghi Thai2
P. sorghi Thai1
P. sorghi pt1
P. sacchari
P. maydis
P. sorghi Thai2
P. sorghi Thai1
P. sorghi pt1
P. sacchari
P. maydis
P. sorghi Thai2
P. sorghi Thai1
P. sorghi pt1
Marker
Cfo I
Hpa II
MspI
Sau 3AI
flanking
PCR
Fragments detected with P. sorghi rRNA probe
P. sacchari
P. maydis
P. sorghi Thai2
P. sorghi Thai1
P. sorghi pt1
P. sacchari
P. maydis
P. sorghi Thai2
P. sorghi Thai1
P. sorghi pt1
ITS 2 & 5.8s
ITS 1
M
M
PCR using conserved ITS primers
Peronosopora sparsa
• “downy mildew of
roses”
QuickTime™ and a
Photo - JPEG decompressor
are needed to see this picture.
• Imported from
California?
• MS Thesis, Sharon Ross
QuickTime™ and a
Photo - JPEG decompressor
are needed to see this picture.
RDM ITS1+5.8+2
Sgr5 .8fo r1
DMITS2For
ITS3 Sgr5 .8fo r2
RDMF1
16 srRNA
Fu n5.8 For
synITS2f
20 0
30 0
ITS-1
ITS1
DMITS2REV
5.8s rRNA
RDMF7
10 0
synITS2rev
RDMR4
40 0
28 s rRNA
RDMR2
50 0
ITS6
60 0
70 0
80 0
90 0
10 00
11 00
ITS-2
ITS2
fu n5.8 rev
DMITS1REV
ITS-4
Sg2 8srev
28 sco nsrev2
12 00
Peronospora sparsa-specific ITS primers
F1
Peronospora sparsa
TGGCTGGCTGCTACTGGGC
Peronospora tabacini---------A--G---A-A
Phytophthora megakaya
--- --T----G-----A
Chladosporium sp
G--- --GG--- -C---T
Botrytis sp
A-A-CTC- -CCT--T-T
F7
Peronospora sparsa
TATCGCGAGCGTTTGGGCCC
Peronospora tabacini-----T-------CT-A-ATG
Phytophthora megakaya
------------------T
Chladosporium sp
- --AAACT-T-GC-TAABotrytis sp
-T-T-T T--T --- --G
Nested Primer PCR for Peronospara sparsa ITS
Sclerospora graminicola
• “pearl millet downy
mildew”
QuickTime™ and a
Photo - JPEG decompressor
are needed to see this picture.
• Joint project with
ICRISAT
• Aparna Viswinathan, MS
• Dale Hess, Bamako, Mali
• Sivi Siviramakrisnan, India
PCR Amplification of ITS-2 Using Standard Primers
1
1.5
2.5
Magnesium concentration (mM)
ITS Amplification “Oomycete’ Primers
OLD
NEW
BLAST RESULTS - S. GRAMINICOLA ITS-2 CLONES
Sequences producing high -scoring segment pairs:
P Value
Mali sample 1
Cryptococcus flavus strain CBS 331 18S r
Filobasidiella neoformans isolate 'ZG280
0
0
Nigeria sample 69
Pseudozyma paraantarctica genes...
Ustilago cynodontis inter
e-160
7e-40
Burkina Faso sample 16 (ITS 2 segment)
Rhizopus homothallicus strain AT
Verticillium fungicola is...
9e-06
6e-04
India isolates
Peronospora sparsa internal trans...
Phytophthora infestans strain 17.
2e-64
1e-56
Peronospora
100
Phytophthora
59
India44-5
100
Pythium
Nigeria47
100
Nigeria93
100
98
Mali4
100
Mali12
India44-15
99
Niger8
100
Niger12
100
India44-6
98
Mali1
Nigeria40
Niger4
BFaso17
BFaso2
gi|21666952 361-510
other variable sequences potentially
useful for probe development
• “COX” spacer between mitochondrial
cytochrome oxidase I and II subunits
 -tubulin (intron 3 region) (single copy)
• Translational elongation factor-1 (intron 4
region)
COX spacer
Consensus
(P. sorghi)
(hits are all
Oomycetes)
COX spacers
ClustalW (v1.4) Multiple Alignment Parameters:
Open Gap Penalty = 10.0; Extend Gap Penalty = 5.0; Delay Divergent = 40%
Transitions: Weighted
0.055
FtDetBtudmaydis8
FtDetBtubSacchisol2
0.465
FtDetBtubsacchis4
0.065
0.048
0.057
FtDetBtubsacchis3
FtDetBtubmaydis10
FtDetBtubmaydis7
FtDetBtubmaydsi6
0.046
0.057
FTDetBtubmaydis5
FtDetBtubmaydis9
0.1
-tubulin sequence comparisons for maize vs sugarcane isolates
ClustalW (v1.4) Multiple Alignment Parameters:
Open Gap Penalty = 10.0; Extend Gap Penalty = 5.0; Delay Divergent = 40%
Transitions: Weighted
0.281
FtDetmaydis10
0.25
FTDetsacchari3
FtDetphillEF1B
0.27
FtDetphilipEF2A
FtDetphilEF1A
FtDetsacch5
0.24
FTDetmaydis6
0.025
0.3
FtDetmaydis5
Phytophthpra
0.05
• EF-1 base sequence comparisons
Tagging and mapping disease resistance genes in sorghum
-Ramasamy Perumal -Seriba Katilé -Clint Magill
Anthracnose resistance
Objective:
Identify DNA-based markers that
co-segregate with gene “Cg1”
that confers resistance to
Colletotrichum graminicola
Tools:
AFLP & SSR markers (from BAC
contig sequences)
Cross: SC748-5 (resistant) by BTx 635 (susceptible)
The AFLP Technique
1
2
3
4
5
6
7
8
9
10 11 12 13 14
300bp
250bp
200
&204bp
150bp
100bp
50bp
ABI Genetic Capillary
System EcoRI-ac/MseI-ca
LI-COR system
EcoRI-acc/MseI-caa
AFLP amplification products from 14 Peronosclerospora sorghi isolates Lanes: 1. P1(A), 2.
P3(A), 3.WHAR.01(A), 4. WHAR.01(B), 5. FUCIK(A), 6. FUCIK(B), 7. CR360(A), 8. CR360(B). 9.
CR459(A), 10. CR459(B), 11. MERTA(A), 12. MERTA(B), 13. WES.(A), 14. P NEW
Segregation for anthracnose resistance and susceptibility in F2
population from a cross between BTx623 (susceptible parent) and
SC748-5 (resistant parent)
Pedigree
Year
Resistant
Ratio
Susceptible fit
2value
Resistant
235
60
3:1
3.41
Resistant
105
41
3:1
0.73
F1
reaction
F2
BTx623*SC748-5 1999
2000
population
This is a subset of the population tested by Mehta et al. (2005)
F2 progeny selected for DNA analysis
Parents:
BTx 623
x
(Susceptible)
SC 748-5
(Resistant)
F1 self pollinations
Homozygous
Resistant
(29)
Homozygous
Susceptible
(29)
Heterozygous
Segregating
(13)
Disease genotypes of F2 individuals verified in F3/F4 for use in gene tagging
These must be correct!!
Disease Scoring:
College Station
1999 & 2000
College Station
Georgia
2003
College Station
2004 - 4 consecutive weeks data
(Dr. L. Prom, USDA)
2003
Cosegregation of AFLP marker Xtxa6227 and the Cg1 locus in F2-3 progeny derived from the cross of
BTx623 and SC748-5. AFLP templates from parental inbreds BTx623 (cg1cg1) and SC748-5 (Cg1Cg1) and
IS3620C (mapping parent) were run as controls to aid in the identification of polymorphic bands.
Co-segregation of dominant SSR marker SSR 1 and the cgf1 locus in F2-3 progeny derived from the
cross of ATx623 and SC748-5. Genomic DNA from parental inbreds BTx623 (cg1cg1) and SC748-5
(Cg1Cg1) were run to aid in the identification of parental alleles for SSR 1. The amplified band from
the SSR 1 allele was 152 bp (BTx623) or 155 bp (SC748-5)
Relative positions of amplified
fragment length polymorphism
(AFLP) and Simple Sequence
repeats (SSRs) markers linked to
gene cg1 in the off-end of linkage
group J in a segregating population
derived from the cross
BTx623*SC748-5
Conclusions
 SC748-5 - major dominant gene
 AFLP - Xtxa6227 - linked in coupling
phase 1.8 cM from cg1 (LG 5)
 SSR1- (CT)8 repeat motif - 3.5 cM
[5’CCATGAATGGACTCGCTGT3’ &
5’CGGAACAGTAAAACCAACGA3’] BAC clone [117e5_04 that contains
txa455(05)]

First report placing a gene for
resistance to Colletotrichum
graminicola on the sorghum molecular
marker map
Identification, chromosome location, and
diagnostic markers for a new gene (Shs1) for
resistance to sorghum head smut
Objectives:
Determining the inheritance and chromosomal
location of the of sorghum head smut (Sporisorium
reilianum) resistance gene Shs1 from BTx635
Identification of markers linked to the Shs1
using high throughput AFLP technology
Conversion of dominant AFLP marker into
STSs/SCARs marker derived by cloning and
sequencing specific AFLP marker
Co-segregation of AFLP marker Xtxa 3450 and the Shs locus in F2:3
families derived from B1 and BTx635. The arrow to the left indicates
the position of AFLP marker Xtxa 3450 (168.7bp)
Segregation ratio of the F 2:3 families (B1 * BTx635)
Total
F 2:3
families
Resistant
families
Susceptible
families
Segregation ratio 2
value
161
134
(85 – Resistant
49 –Heterozygous)
27
3:1
5.82
Markers linked to Shs locus in LG 03
AFLP marker*
Designation
Size of the
Marker (bp)
Primer
Combination
Map
Distance (cM)
Xtxa 3450
168.7
Ectg + Mccc
5.8
Xtxa 2058
279.7
Egga + Mccg
7.9
Xtxa 3823
293.9
Etac + Mctc
9.6
* http://sorgblast.tamu.edu
QTL mapping of downy mildew resistance in
maize
QuickTime™ and a
decompressor
are needed to see this picture.