Download Mutation

Document related concepts

SNP genotyping wikipedia , lookup

DNA vaccination wikipedia , lookup

Expanded genetic code wikipedia , lookup

DNA polymerase wikipedia , lookup

Molecular cloning wikipedia , lookup

Epigenomics wikipedia , lookup

Genome evolution wikipedia , lookup

DNA supercoil wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Gene wikipedia , lookup

BRCA mutation wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

Mitochondrial DNA wikipedia , lookup

Extrachromosomal DNA wikipedia , lookup

Non-coding DNA wikipedia , lookup

Koinophilia wikipedia , lookup

History of genetic engineering wikipedia , lookup

DNA repair wikipedia , lookup

Cre-Lox recombination wikipedia , lookup

Zinc finger nuclease wikipedia , lookup

Genealogical DNA test wikipedia , lookup

Replisome wikipedia , lookup

Saethre–Chotzen syndrome wikipedia , lookup

Nucleic acid double helix wikipedia , lookup

Population genetics wikipedia , lookup

Genome editing wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Genetic code wikipedia , lookup

Helitron (biology) wikipedia , lookup

Cancer epigenetics wikipedia , lookup

DNA damage theory of aging wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Cell-free fetal DNA wikipedia , lookup

Deoxyribozyme wikipedia , lookup

No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup

Microsatellite wikipedia , lookup

Epistasis wikipedia , lookup

Nucleic acid analogue wikipedia , lookup

Oncogenomics wikipedia , lookup

Microevolution wikipedia , lookup

Mutagen wikipedia , lookup

Mutation wikipedia , lookup

Frameshift mutation wikipedia , lookup

Point mutation wikipedia , lookup

Transcript
Chapter 7a - DNA mutation and repair:
•
Mutation and adaptation
•
Types of mutations
•
DNA repair mechanisms
Mutation and adaptation:
Jean-Baptiste Lamarck (1744-1829)
•
Proposed “inheritance of acquired traits” ~1801.
•
Induction by the environment; also known as transformism,
transmutation, or soft inheritance.
•
Examples: giraffes that acquire longer necks or athletes that build
strong muscles pass these traits to their offspring.
•
In genetic terms, Lamarckism is the idea that environmentally
induced mutations could be passed to the offspring.
Example 1:
Example 1:
Example 1:
Example 1:
Example 2
Example 2
Example 2
Example 2
Mutation and adaptation:
Jean-Baptiste Lamarck (1744-1829)
•
Ideas largely ignored or attacked during his lifetime.
•
Never won the acceptance and esteem of his colleagues and died in
poverty and obscurity.
•
Today Lamarck is mostly associated with a discredited theory of
heredity (Lamarckism persisted until 1930s/1940s).
•
Interest in Lamarck has resurged with discoveries in the field of
epigenetics.
•
Epigenetics - heritable changes in gene expression or the phenotype
caused by mechanisms other than changes in the underlying DNA
sequence (≠ maternal effect).
Charles Darwin (1809-1882)
•
Heritable adaptive variation results from random mutation and
natural selection (1859, The Origin of Species).
•
Contrary to Larmarck, inheritance of adaptive traits does not result
from induction by environmental influences.
•
But differential survival (selection) and heritable variation (arising
from mutation in the DNA sequence).
•
Years following Darwin and rediscovery of Mendel resulted in
controversy (until 1930s/1940s) about the relative importance of
mutation and selection.
•
Largely resolved by theoretical and empirical work of Fisher,
Haldane, and Wright (see chapter 21 lectures).
Experimental test of Lamarck’s “inheritance of acquired traits”
Salvador Luria and Max Delbrück (1943)
The two possibilities tested by the Luria–Delbrück
experiment…
(A) If mutations are induced by the media,
roughly the same number of mutants are
expected to appear on each plate (LAMARCK)
(B) If mutations arise spontaneously during cell
divisions prior to plating, each plate will have
a highly variable number of mutants
(DARWIN)
Experimental test of Lamarck’s “inheritance of acquired traits”
Salvador Luria and Max Delbrück (1943)
Experimental test of Lamarck’s “inheritance of acquired traits”
Salvador Luria and Max Delbrück (1943)
Experimental test of Lamarck’s “inheritance of acquired traits”
Salvador Luria and Max Delbrück (1943)
The two possibilities tested by the Luria–Delbrück
experiment…
(A) If mutations are induced by the media,
roughly the same number of mutants are
expected to appear on each plate (LAMARCK)
(B) If mutations arise spontaneously during cell
divisions prior to plating, each plate will have
a highly variable number of mutants
(DARWIN)
The Luria-Delbrück experiment
established that mutations…
1. are occurring randomly
2. occur in the absence of the
selective pressure - selection acts
on pre-existing mutants; it does
not create them.
What is a mutation?
•
Substitution, deletion, or insertion of a base pair.
What is a mutation?
•
Substitution, deletion, or insertion of a base pair.
What is a mutation?
•
Substitution, deletion, or insertion of a base pair.
What is a mutation?
•
Substitution, deletion, or insertion of a base pair.
What is a mutation?
•
Substitution, deletion, or insertion of a base pair.
•
Chromosomal deletion, insertion, or rearrangement.
What is a mutation?
•
Substitution, deletion, or insertion of a base pair.
•
Chromosomal deletion, insertion, or rearrangement.
Somatic mutations occur in somatic cells and only affect the individual
in which the mutation arises.
Germ-line mutations alter gametes and passed to the next generation.
What is a mutation?
•
Substitution, deletion, or insertion of a base pair.
•
Chromosomal deletion, insertion, or rearrangement.
Somatic mutations occur in somatic cells and only affect the individual
in which the mutation arises.
Germ-line mutations alter gametes and passed to the next generation.
Mutations are quantified in two ways:
1.
Mutation rate = probability of a particular type of mutation per unit
time (or generation).
2.
Mutation frequency = number of times a particular mutation occurs
in a population of cells or individuals.
Two types of point mutations:
1.
Base pair substitutions.
1.
Transitions
•
Convert a purine-pyrimidine to the other purine-pyrimidine.
•
4 types of transitions; A  G and T  C
•
Most transitions results in synonymous substitution because
of the degeneracy of the genetic code.
2.
2.
Transversions
•
Convert a purine-pyrimidine to a pyrimidine-purine.
•
8 types of transversions; A  T, G  C, A  C, and G  T
•
Transversions are more likely to result in nonsynonomous
substitution.
Base pair deletions and insertions
Fig. 7.3, Types of base pair substitutions and mutations.
Terminology describing mutations in protein coding sequences:
Nonsynonymous/missense mutation
Base pair substitution results in substitution of a different amino acid.
Nonsense mutation
Base pair substitution results in a stop codon (and shorter polypeptide).
Neutral nonsynonymous mutation
Base pair substitution results in substitution of an amino acid with
similar chemical properties (protein function is not altered).
Synonymous/silent mutation
Base pair substitution results in the same amino acid.
Frameshift mutations:
Deletions or insertions (not divisible by 3) result in translation of
incorrect amino acids, stops codons (shorter polypeptides), or readthrough of stop codons (longer polypeptides).
Fig. 7.3, Types of base pair substitutions and mutations.
Fig. 7.4, Effect of a nonsense mutation on translation.
Fig. 7.4, Effect of a nonsense mutation on translation.
Mutation Type Side-by-Side Comparison:
Reverse mutations and suppressor mutations:
Forward mutation
Mutation changes wild type (ancestral) to mutant (derived).
Reverse mutation (back mutation)
Mutation changes mutant (derived) to wild type (ancestral).
•
Reversion to the wild type amino acid restores function.
•
Reversion to another amino acid partly or fully restores
function.
Suppressor mutation
Occur at sites different from the original mutation and mask or
compensate for the initial mutation without reversing it.
•
Intragenic suppressors occur on the same codon;
e.g., nearby addition restores a deletion
•
Intergenic suppressors occur on a different gene.
Suppressor mutation (example 1)
Suppressor mutation (example 2)
Intergenic suppressor genes:
•
Many function in mRNA translation.
•
Each suppressor gene works on only one type of nonsense,
missense, of frameshift mutation.
•
Suppressor genes often encode tRNAs, which possess anti-codons
that recognize stop codons and insert an amino acid.
•
Three classes of tRNA nonsense suppressors, one for each stop
codon (UAG, UAA, UGA).
•
tRNA suppressor genes coexist with wild type tRNAS.
•
tRNA suppressors compete with release factors, which are
important for proper amino acid chain termination.
•
Small number of read-through polypeptides are produced; tandem
stop codons (UAGUAG) are required to result in correct translation
termination.
Fig. 7.5, tRNA suppressor gene mechanism for nonsense mutation.
Fig. 7.5, tRNA suppressor gene mechanism for nonsense mutation.
Spontaneous mutations differ from induced mutations:
•
Spontaneous mutations can occur at any point of the cell cycle.
•
Movement of transposons (mobile genetic elements, subject of next
lecture) causes spontaneous mutations.
•
Mutation rate = ~10-4 to 10-6 mutations/gene/generation
•
Rates vary by lineage, and many spontaneous errors are repaired.
Spontaneous mutations:
Different types DNA replication errors
Wobble-pairing
T-G, C-A, A-G, T-C
Normal pairing typically occurs in the next round of replication;
frequency of mutants in F2 is 1/4.
GT pairs are targets for correction by proofreading and other repair
systems.
Fig. 7.7, Mutation caused by mismatch wobble base pairing.
Spontaneous mutations:
Different types DNA replication errors
Wobble-pairing
T-G, C-A, A-G, T-C
Normal pairing typically occurs in the next round of replication;
frequency of mutants in F2 is 1/4.
GT pairs are targets for correction by proofreading and other repair
systems.
Additions and deletions
DNA loops out on template strand, DNA polymerase skips bases, and
deletion occurs.
DNA loops out on new strand, DNA polymerase adds untemplated
bases.
Fig. 7.8, Addition and deletion by DNA looping-out.
Spontaneous mutations:
Spontaneous chemical changes
Depurination
Common; A or G are removed and replaced with a random base.
Deamination
Amino group is removed from a base (C  U); if not replaced U pairs
with A in next round of replication (CG  TA).
Prokaryote DNA contains small amounts of 5MC; deamination of 5MC
produces T (CG  TA).
Regions with high levels of 5MC are mutation hot spots.
Fig. 7.9, Deamination.
Induced mutations
Radiation (e.g., X-rays, UV)
Ionizing radiation breaks covalent bonds including those in DNA and is
the leading cause of chromosome mutations.
Ionizing radiation has a cumulative effect and kills cells at high doses.
UV (254-260 nm) causes purines and pyrimidines to form abnormal
dimer bonds and bulges in the DNA strands.
Fig. 19.10, Thymine dimers induced by UV light.
Induced mutations: chemical mutagens
Base analogs
•
Similar to normal bases, incorporated into DNA during replication.
•
Some cause mis-pairing (e.g., 5-bromouracil).
•
Not all are mutagenic.
Induced mutations: chemical mutagens
Base analogs
•
Similar to normal bases, incorporated into DNA during replication.
•
Some cause mis-pairing (e.g., 5-bromouracil).
•
Not all are mutagenic.
Induced mutations: chemical mutagens
Base analogs
•
Similar to normal bases, incorporated into DNA during replication.
•
Some cause mis-pairing (e.g., 5-bromouracil).
•
Not all are mutagenic.
Fig. 7.11b, Mutagenic efffects
of 5-bromouracil
Induced mutations: Chemical mutagens
Base modifying agents, act at any stage of the cell cycle:
•
Deaminating agents
•
Hydroxylating agents
•
Alkylating agents
Fig. 7.12, Base-modifying agents (a)
Induced mutations: Chemical mutagens
Base modifying agents, act at any stage of the cell cycle:
•
Deaminating agents
•
Hydroxylating agents
•
Alkylating agents
Fig. 7.12, Base-modifying agents (b)
Induced mutations: chemical
mutagens
Intercalating agents:
•
Thin, plate-like hydrophobic
molecules insert themselves
between adjacent base-pairs,
•
Mutagenic intercalating agents
cause insertions during DNA
replication.
•
Loss of intercalating agent can
result in deletion.
•
Examples: proflavin, ethidium
bromide
Fig. 7.13
Detecting environmental mutations: Ames Test (after Bruce Ames)
Ames Test is an inexpensive method used to screen possible
carcinogens and mutagens.
•
Histidine auxotroph Salmonella typhimurium (requires Histidine to
grow) are mixed with rat liver enzymes and plated on media lacking
histidine.
•
Liver enzymes are required to detect mutagens that are converted
to carcinogenic forms by the liver (e.g., procarcinogens).
•
Test chemical is then added to medium.
•
Control plates show only a small # of revertants (bacteria cells
growing without histidine).
•
Plates innoculated with mutagens or procarcinogens show a larger
# of revertants.
•
Auxotroph will not grow without Histidine unless a mutation has
occurred.
Detecting environmental mutations: Ames Test (after Bruce Ames)
Fig. 7.14
Detecting environmental mutations: Ames Test (after Bruce Ames)
DNA repair mechanisms:
Enzyme-based repair mechanisms prevent and repair mutations and
damage to DNA in prokaryotes and eukaryotes.
Types of mechanisms
•
DNA polymerase proofreading - 3’-5’ exonuclease activity corrects
errors during the process of replication.
•
Photoreactivation (also called light repair) - photolyase enzyme is
activated by UV light (320-370 nm) and splits abnormal base
dimers apart.
•
Demethylating DNA repair enzymes - repair DNAs damaged by
alkylation.
•
Nucleotide excision repair (NER) - Damaged regions of DNA
unwind and are removed by specialized proteins; new DNA is
synthesized by DNA polymerase.
•
Methyl-directed mismatch repair - removes mismatched base
regions not corrected by DNA polymerase proofreading. Sites
targeted for repair are indicated in E. coli by the addition of a
methyl (CH3) group at a GATC sequence.
Fig. 7.16 Nucleotide excision repair (NER) of pyrimidine dimmer
and other damage-induced distortions of DNA
Fig. 7.17 Mechanism of mismatch correction repair
DNA repair mechanisms (conserved):