* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ch 5
Pharmacometabolomics wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Fatty acid synthesis wikipedia , lookup
Photosynthesis wikipedia , lookup
Phosphorylation wikipedia , lookup
Biochemical cascade wikipedia , lookup
Metalloprotein wikipedia , lookup
Butyric acid wikipedia , lookup
NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup
Nicotinamide adenine dinucleotide wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
Amino acid synthesis wikipedia , lookup
Electron transport chain wikipedia , lookup
Biosynthesis wikipedia , lookup
Adenosine triphosphate wikipedia , lookup
Light-dependent reactions wikipedia , lookup
Metabolic network modelling wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Basal metabolic rate wikipedia , lookup
Biochemistry wikipedia , lookup
Microbial metabolism wikipedia , lookup
Citric acid cycle wikipedia , lookup
Microbial Metabolism Ch 5 • Metabolism is the sum of the chemical reactions in an organism. • Catabolism is the energy-releasing processes. • Anabolism is the energy-using processes. (typically building something) Microbial Metabolism • Catabolism provides the building blocks and energy for anabolism. Figure 5.1 Amphibolic pathways • Are metabolic pathways that have both catabolic and anabolic functions. – This is basically all of life Figure 5.32.1 Amphibolic pathways Figure 5.32.2 • A metabolic pathway is a sequence of enzymatically catalyzed chemical reactions in a cell. • A primary metabolic pathway are the reactions that do the basic work of the cell. Get food and grow • Metabolic pathways are determined by enzymes. • Enzymes are encoded by genes. Biochemical tests • Used to identify bacteria. • Enzymes are genes • Sum of genes is your organism Figure 10.8 Enzymes Figure 5.2 Enzymes • Biological catalysts – Specific for a chemical reaction; not used up in that reaction • Apoenzyme: protein • Cofactor: Nonprotein component – Coenzyme: Organic cofactor • Holoenzyme: Apoenzyme + cofactor Enzymes Figure 5.3 Important Coenzymes • • • • • • • NAD+ NADP+ FAD Coenzyme A Biotin Folic acid Many of the vitamins Enzymes • The turnover number is generally 1-10,000 molecules per second. Figure 5.4 Factors Influencing Enzyme Activity • Enzymes can be denatured by temperature and pH Figure 5.6 • Factors Influencing Enzyme Activity Temperature Figure 5.5a • Factors Influencing Enzyme Activity pH Figure 5.5b Factors Influencing Enzyme Activity • Substrate concentration Figure 5.5c • Factors Influencing Enzyme Activity Competitive inhibition Figure 5.7a, b Factors Influencing Enzyme Activity Sulfa inhibits the enzyme that uses PABA for synthesis of folic acid Factors Influencing Enzyme Activity • Noncompetitive inhibition Figure 5.7a, c • Feedback inhibition Figure 5.8 The Generation of ATP • ATP is generated by the phosphorylation of ADP. The Generation of ATP • Substrate-level phosphorylation is the transfer of a high-energy PO4- to ADP. The Generation of ATP • Energy released from the transfer of electrons (oxidation) of one compound to another (reduction) is used to generate ATP by chemiosmosis. Metabolic Pathways Carbohydrate Catabolism • The breakdown of carbohydrates to release energy – Glycolysis – Krebs cycle – Electron transport chain Glycolysis • The oxidation of glucose to pyruvic acid, produces ATP and NADH. Preparatory Stage Preparatory Stage Glucose 1 • 2 ATPs are used • Glucose is split to form 2 Glyceraldehyde3-phosphate Glucose 6-phosphate 2 Fructose 6-phosphate 3 4 Fructose 1,6-diphosphate 5 Glyceraldehyde 3-phosphate (GP) Dihydroxyacetone phosphate (DHAP) Figure 5.12.1 Energy-Conserving Stage 6 1,3-diphosphoglyceric acid • 2 Glucose-3phosphate oxidized to 2 Pyruvic acid • 4 ATP produced • 2 NADH produced 7 3-phosphoglyceric acid 8 2-phosphoglyceric acid 9 Phosphoenolpyruvic acid (PEP) 10 Pyruvic acid Figure 5.12.2 Glycolysis • Glucose + 2 ATP + 2 ADP + 2 PO4– + 2 NAD+ 2 pyruvic acid + 4 ATP + 2 NADH + 2H+ Alternatives to Glycolysis • Pentose phosphate pathway: – Uses pentoses and NADPH – Operates with glycolysis – Use and production of 5 carbon sugars (na) – Bacillus subtilis, E. coli, Enterococcus faecalis • Entner-Doudoroff pathway: – Produces NADPH and ATP – Does not involve glycolysis – Pseudomonas, Rhizobium, Agrobacterium Cellular Respiration • Oxidation of molecules liberates electrons for an electron transport chain • ATP generated by oxidative phosphorylation Intermediate Step • Pyruvic acid (from glycolysis) is oxidized and decarboyxlated Figure 5.13.1 Krebs Cycle • Oxidation of acetyl CoA produces NADH and FADH2 Krebs Cycle Figure 5.13.2 The Electron Transport Chain • A series of carrier molecules that are, in turn, oxidized and reduced as electrons are passed down the chain. • Energy released can be used to produce ATP by chemiosmosis. Chemiosmosis Figure 5.15 Electron transport and Chemiosmosis Figure 5.16.2 Figure 5.14 Respiration • Aerobic respiration: The final electron acceptor in the electron transport chain is molecular oxygen (O2). • Anaerobic respiration: The final electron acceptor in the electron transport chain is not O2. Yields less energy than aerobic respiration because only part of the Krebs cycles operations under anaerobic conditions. Anaerobic respiration Electron acceptor Products NO3– NO2–, N2 + H2O SO4– H2S + H2O CO32 – CH4 + H2O • Energy produced from complete oxidation of 1 glucose using aerobic respiration Pathway ATP produced NADH FADH2 produce produce d d Glycolysis 2 2 0 Intermediate step 0 2 Krebs cycle 2 6 2 Total 4 10 2 • ATP produced from complete oxidation of 1 glucose using aerobic respiration Pathway Glycolysis Intermediate step Krebs cycle Total By substratelevel phosphorylati on 2 By oxidative phosphorylation From From NADH FADH 6 0 0 6 2 18 4 4 30 4 • 36 ATPs are produced in eukaryotes. Pathway Eukaryote Prokaryote Glycolysis Cytoplasm Cytoplasm Intermediate step Cytoplasm Cytoplasm Krebs cycle Mitochondrial matrix Mitochondrial inner membrane Cytoplasm ETC Plasma membrane Fermentation • Releases energy from oxidation of organic molecules • Does not require oxygen • Does not use the Krebs cycle or ETC • Uses an organic molecule as the final electron acceptor Fermentation Figure 5.18b Fermentation • Alcohol fermentation. Produces ethyl alcohol + CO2 • Lactic acid fermentation. Produces lactic acid. – Homolactic fermentation. Produces lactic acid only. – Heterolactic fermentation. Produces lactic acid and other compounds. Fermentation Figure 5.19 Fermentation Production of acid and gas Figure 5.23 Lipid Catabolism Figure 5.20 Protein Catabolism Protein Extracellular proteases Deamination, decarboxylation, dehydrogenation Amino acids Organic acid Krebs cycle • Used to identify bacteria. Biochemical tests Figure 10.8 • Halobacterium uses bacteriorhodopsi n, not chlorophyll, to generate electrons for a chemiosmotic proton pump. Chemotrophs • Use energy from chemicals. – Chemoheterotroph Glucose NAD+ ETC Pyruvic acid NADH ADP + P • Energy is used in anabolism. ATP Chemotrophs • Use energy from chemicals. – Chemoautotroph, Thiobacillus ferroxidans 2Fe2+ NAD+ ETC 2Fe3+ NADH ADP + P ATP 2 H+ • Energy used in the Calvin-Benson cycle to fix CO2. Metabolic Diversity Among Organisms Nutritional type Energy source Carbon source Example Photoautotroph Light CO2 Oxygenic: Cyanobacteria plants. Anoxygenic: Green, purple bacteria. Organic Green, purple compounds nonsulfur bacteria. Photoheterotroph Light Chemoautotroph Chemical CO Chemoheterotroph Chemical Organic Fermentative bacteria. compounds Animals, protozoa, fungi, bacteria. Iron-oxidizing bacteria. Metabolic Pathways of Energy Use • Polysaccharide Biosynthesis Figure 5.28 Metabolic Pathways of Energy Use • Lipid Biosynthesis Figure 5.29 Metabolic Pathways of Energy Use • Amino Acid and Protein Biosynthesis Figure 5.30a Metabolic Pathways of Energy Use •Amino Acid and Protein Biosynthesis Figure 5.30b Metabolic Pathways of Energy Use • Purine and Pyrimidine Biosynthesis Figure 5.31 Amphibolic pathways • Are metabolic pathways that have both catabolic and anabolic functions. Figure 5.32.1 Amphibolic pathways Figure 5.32.2