* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ch. 7 Gene Expresion part 2
DNA vaccination wikipedia , lookup
Epigenetics in stem-cell differentiation wikipedia , lookup
Non-coding DNA wikipedia , lookup
Epigenetics in learning and memory wikipedia , lookup
Saethre–Chotzen syndrome wikipedia , lookup
Neuronal ceroid lipofuscinosis wikipedia , lookup
Cell-free fetal DNA wikipedia , lookup
Epigenetics of neurodegenerative diseases wikipedia , lookup
Genetic engineering wikipedia , lookup
Gene therapy wikipedia , lookup
Epigenetics of diabetes Type 2 wikipedia , lookup
Genome evolution wikipedia , lookup
No-SCAR (Scarless Cas9 Assisted Recombineering) Genome Editing wikipedia , lookup
Primary transcript wikipedia , lookup
Gene therapy of the human retina wikipedia , lookup
Gene expression programming wikipedia , lookup
X-inactivation wikipedia , lookup
Cancer epigenetics wikipedia , lookup
Frameshift mutation wikipedia , lookup
Epigenetics of human development wikipedia , lookup
History of genetic engineering wikipedia , lookup
Genome editing wikipedia , lookup
Gene expression profiling wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Genome (book) wikipedia , lookup
Polycomb Group Proteins and Cancer wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Helitron (biology) wikipedia , lookup
Designer baby wikipedia , lookup
Oncogenomics wikipedia , lookup
Microevolution wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Gene Expression and Control Chapter 7 Part 2 7.6 Mutated Genes and Their Products  Mutations are permanent changes in the nucleotide sequence of DNA, which may alter a gene product  A mutation that changes a gene’s product may have harmful effects • Example: Mutations that affect the proteins in hemoglobin reduce blood’s ability to carry oxygen Types of Mutations  Deletion • Mutation in which one or more base pairs are lost  Insertion • Mutation in which one or more base pairs become inserted into DNA  Base-pair substitution • Type of mutation in which a single base-pair changes Two Common Mutations in Hemoglobin A Hemoglobin, an oxygen-transport protein in red blood cells. This protein consists of four globin chains: two alpha chains (blue) and two beta chains (green). Each globin chain folds up to form a pocket that cradles a type of cofactor called a heme (red). Oxygen binds to the iron atom at the center of each heme group. Fig. 7-9a, p. 125 part of DNA mRNA transcribed from DNA threonine (thr) proline (pro) glutamic acid (glu) glutamic acid (glu) lysine (lys) resulting amino acid sequence B Part of the DNA, mRNA, and amino acid sequence of the beta chain of a normal hemoglobin molecule. Fig. 7-9b, p. 125 deletion in DNA altered mRNA threonine (thr) proline (pro) glycine (gly) arginine (arg) threonine (thr) altered amino acid sequence C A single base-pair deletion causes the reading frame for the rest of the mRNA to shift, so a completely different protein product forms. This mutation results in a defective globin chain. The outcome is thalassemia, a genetic disorder in which a person has an abnormally low amount of hemoglobin. Fig. 7-9c, p. 125 base-pair substitution in DNA altered mRNA threonine (thr) proline (pro) valine (val) glutamic acid (glu) lysine (lys) altered amino acid sequence D A base-pair substitution in DNA replaces a thymine with an adenine. When the altered mRNA is translated, valine replaces glutamate as the sixth amino acid of the new polypeptide chain. Hemoglobin with this chain is called HbS, or sickle hemoglobin. Fig. 7-9d, p. 125 Base-pair substitution Sickle-Cell Anemia: A Base-Pair Substitution valine histidine leucine threonine proline (val) (thr) (his) (leu) (pro) glutamic glutamic acid acid (glu) (glu) 1 Normal amino acid sequence at the start of the hemoglobin beta chain. valine histidine leucine threonine proline (thr) (val) (pro) (his) (leu) 2 One amino acid substitution results in the abnormal beta chain of sickle hemoglobin (HbS). The sixth amino acid in such chains is valine, not glutamic acid. 3 Glutamic acid carries an overall negative charge; valine carries no charge. This difference causes the protein to behave differently. At low oxygen levels, HbS molecules stick together and form rod-shaped clumps that distort normally round red blood cells into sickle shapes. (A sickle is a farm tool with a crescent-shaped blade.) valine (val) glutamic acid (glu) sickled cell normal cell 4 Tionne “T-Boz” Watkins of the music group TLC is a celebrity spokesperson for the Sickle Cell Disease Association of America. She was diagnosed with sickle-cell anemia as a child. Fig. 7-10a, p. 126 Fig. 7-10b, p. 126 What Causes Mutations?  Most mutations result from unrepaired DNA polymerase errors during DNA replication  Some result from transposable element activity, or from exposure to radiation or chemicals  Transposable element • Small segment of DNA that can spontaneously move to a new location in a chromosome Ionizing Radiation Damage  Ionizing radiation (x-rays) breaks chromosomes and produces free radicals Nonionizing Radiation Damage  Nonionizing radiation (UV light) results in thymine dimers, which lead to skin cancer thymine dimer Fig. 7-11b, p. 127 Environmental Damage  Some natural and synthetic chemicals cause mutations in DNA  Example: Cigarette smoke transfers small hydrocarbon groups to bases in DNA, causing mispairing during replication Frameshift mutation Duplication Deletion Inversion Translocation Sickle-cell anemia 7.7 Examples of Eukaryotic Gene Controls  All cells in your body carry the same DNA  Some genes are transcribed by all cells, but most cells are specialized (differentiated) to use only certain genes  Which genes are expressed at a given time depends on the type of cell and conditions Cell Differentiation  Cells differentiate when they start expressing a unique subset of their genes – controls over gene expression are the basis of differentiation  Differentiation • The process by which cells become specialized • Occurs as different cell lineages begin to express different subsets of their genes Controlling Gene Expression  Controlling gene expression is critical for normal development and function of a eukaryotic body  All steps between transcription and delivery of gene product are regulated  Transcription factor • Protein that influences transcription by binding to DNA Homeotic Genes  Homeotic gene • Type of master gene that controls formation of specific body parts during development  Master gene • Gene encoding a product that affects the expression of many other genes • Controls an intricate task such as eye formation Homeodomains  All homeotic genes encode transcription factors with a homeodomain – a region of about 60 amino acids that can bind to a promoter or some other DNA sequence Identifying Homeotic Genes and Their Functions  Researchers study the function of a homeotic gene by altering its expression – by introducing a mutation or deleting it entirely • Examples: eyeless, dunce, tinman, groucho  Gene knockout • A gene that has been inactivated in an organism Gene Knockout Experiment: Eyeless Fig. 7-12a, p. 128 Fig. 7-12b, p. 128 Fig. 7-12c, p. 128 PAX6 Gene Function  Many master genes are interchangeable among species; in humans and many other animals, the PAX6 gene affects eye formation Sex Chromosome Genes  In mammals, males have only one X chromosome – females have two, but one is tightly condensed into a Barr body and inactive  Dosage compensation • Theory that X chromosome inactivation equalizes gene expression between males and females X Chromosome Inactivation  Female cells have Barr bodies, male cells do not The Y Chromosome  The SRY gene, found on the Y chromosome, is the master gene for male sex determination • Triggers formation of testes • Testosterone produced by testes controls formation of male secondary traits  Absence of SRY gene in females triggers development of ovaries, female characteristics Structures that will give rise to external genitalia appear at seven weeks Development of Human Reproductive Organs SRY expressed no SRY present penis vaginal opening birth approaching Fig. 7-14, p. 129 Cancer: Gene Expression Out of Control  Many gene expression controls regulate cell growth and division – mutations that disrupt normal controls can cause cancer  Cancer • Disease that occurs when a malignant neoplasm physically and metabolically disrupts body tissues Tumors  Tumor • Abnormally growing and dividing mass of cells  Metastasis • A process of cancer in which tumor cells lose membrane recognition proteins, break free, and establish themselves in other parts of the body Cancer and Mutations  Cancer begins with a mutation in a gene whose product controls cell growth and division  A mutation that causes cancer may be inherited or be caused by environmental agents  Tumors are more likely to occur when mutations occur in tumor suppressor genes, such as BRCA1 and BRCA2 BRCA Genes and Cancer normal cells in organized clusters irregular clusters of cancer cells Fig. 7-15b, p. 130 Controls of eukaryotic gene expression Fate map X-chromosome inactivation Protein synthesis summary 7.8 Impacts/Issues Revisited  Ricin causes ribosomes to stop working – protein synthesis stops, and the cell quickly dies  Researchers are trying to kill cancer cells without harming normal cells by attaching ricin to an antibody that can find cancer cells in the body Digging Into Data: BRCA Mutations in Women Diagnosed with Breast Cancer
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            