* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Energetics and Catabolism
Fatty acid synthesis wikipedia , lookup
Metalloprotein wikipedia , lookup
Metabolic network modelling wikipedia , lookup
Paracrine signalling wikipedia , lookup
Basal metabolic rate wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Biosynthesis wikipedia , lookup
Phosphorylation wikipedia , lookup
Glyceroneogenesis wikipedia , lookup
Photosynthesis wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Amino acid synthesis wikipedia , lookup
Biochemical cascade wikipedia , lookup
Adenosine triphosphate wikipedia , lookup
NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup
Electron transport chain wikipedia , lookup
Nicotinamide adenine dinucleotide wikipedia , lookup
Microbial metabolism wikipedia , lookup
Light-dependent reactions wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
Biochemistry wikipedia , lookup
Oxidative phosphorylation wikipedia , lookup
Chapter 13: Energetics and Catabolism 1 Chapter 13:Introduction All living cells need energy to move and grow The energy to build cells comes from chemical reactions. - Catabolism: Breakdown of complex molecules into smaller ones - Anabolism: Reactions that build cells Catabolism provides energy & intermediates for anabolism. - However, some of the energy is released as heat. 2 TABLE 13.1 3 Free energy (G) Free energy is the energy in a chemical reaction that is available to do useful work. The change in free energy during a reaction is G0'. This is expressed in kilojoules. Catabolic reaction = exergonic Anabolic reactions = endergonic 4 Gibbs Free Energy Change A+B C+D G = Go’ + RT ln [C] [D]/[A][B] G = Go’ + 2.303 RT log [C] [D]/[A][B] At equilibrium G = 0 Go’ = - 2.303 RT log [C] [D]/[A][B] The direction of a reaction can be predicted by a thermodynamic quantity called Gibbs free energy change, G. - If Go’ < 0, the process may go forward. - If Go’ > 0, the reaction will go in reverse. 5 In living cells, The standard conditions for Go’ are as follows: - Temperature = 298 K (25° C) - Pressure = 1 atm - Concentrations = 1 M - pH = 7 6 Energy Carriers Many of the cell’s energy transfer reactions involve energy carriers. - Molecules that gain or release small amounts of energy in reversible reactions. - Examples: NADH and ATP Some energy carriers also transfer electrons. - Electron donor is a reducing agent. - Electron acceptor is an oxidizing agent. 7 Adenosine Triphosphate ATP contains a base, sugar, and three phosphates. Under physiological conditions, ATP always forms a complex with Mg2+. 8 Adenosine Triphosphate ATP can transfer energy to cell processes in three different ways: - Hydrolysis releasing phosphate (Pi) - Hydrolysis releasing pyrophosphate (PPi) - Phosphorylation of an organic molecule Note that besides ATP other nucleotides carry energy. - For example, guanosine triphosphate (GTP) provides energy for protein synthesis. 9 NADH Nicotinamide adenine dinucleotide (NADH) carries two or three times as much energy as ATP. - It also donates and accepts electrons. - NADH is the reduced form. - NAD+ is the oxidized form. Overall reduction of NAD+ consumes two hydrogen atoms to make NADH. NAD+ + 2H+ + 2e– → NADH + H+ Go’ = 62 KJ/mol Reaction requires energy input from food molecules. 10 Figure 13.7A 11 FADH Flavine adenine dinucleotide (FAD) is another related coenzyme that can transfer electrons. - FADH2: reduced form - FAD: oxidized form Unlike NAD+, FAD is reduced by two electrons and two protons. Figure 13.7B 12 Enzymes Enzymes are catalytic proteins (or RNA) that speed up the rate of biochemical reactions by lowering the activation energy. Enzymes are highly specific in the reactions they catalyze and this specificity is found in the three dimensional structure of the polypeptide (s) in the protein 13 Enzymes Enzymes catalyze biological reactions. - Lower the activation energy allowing rapid conversion of reactants to products H2 + 1/2 O2 H2O Go’ = -237 kJ/mole 14 Enzyme Properties • Very specific • Large proteins (104 to 106) • 3-D determines the activity and specificity • Very efficient: rates increased 108 to 1010 fold • Subjected to cellular controls 15 Enzyme activity • Active site • Enzyme-substrate complex • Tranformation • Release of products and original enzyme 16 Enzymes The turnover number is generally 1-10,000 molecules per second. 17 Figure 5.4 Factors • Temperature • pH • Substrate concentration 18 Factors influencing enzyme activity Competitive inhibition 19 Figure 5.7a, b Factors influencing enzyme activity 20 Enzymes Enzymes couple specific energy-yielding reactions with energy-requiring reactions. 21 Factors influencing enzyme activity Noncompetitive inhibition 22 Figure 5.7a, c Catabolism: The Microbial Buffet There are three main catabolic pathways: - Fermentation: Partial breakdown of organic food without net electron transfer to an inorganic terminal electron acceptor - Respiration: Complete breakdown of organic molecules with electron transfer to a terminal electron acceptor such as O2 - Photoheterotrophy: Catabolism is conducted with a “boost” from light 23 Microbes catalyze many different kinds of substrates or catabolites. 24 Starch Cellulose 25 Polysaccharides are broken down to disaccharides, and then to monosaccharides. - Sugar and sugar derivatives, such as amines and acids, are catabolized to pyruvate. Pyruvate and other intermediary products of sugar catabolism are fermented or further catabolized to CO2 and H2O via the TCA cycle. Lipids and amino acids are catabolized to glycerol and acetate, as well as other metabolic intermediates. Aromatic compounds, such as lignin and benzoate derivatives, are catabolized to acetate through different pathways, such as the catechol pathway. 26 27 28 Glucose Breakdown Glucose is catabolized via three main routes. Figure 13.15 29 Embden-Meyerhoff-Parnas Pathway In the EMP pathway, a glucose molecule undergoes a stepwise breakdown to two pyruvate molecules. Figure 13.16 30 Embden-Meyerhoff-Parnas Pathway The EMP pathway is the most common form of glycolysis. - It occurs in the cytoplasm of the cell. - It functions in the presence or absence of O2. - It involves ten distinct reactions that are divided into two stages. 31 Stage 1: Glucose activation stage • Glucose is “activated” by phosphorylations that ultimately convert it into fructose-1,6bisphosphate. • Two ATPs are expended. • Fructose-1,6-bisphosphate is cleaved into two 3-carbon-phosphate isomers. -Dihydroxyacetone phosphate -Gyceraldehyde-3-phosphate Dihydroxyacetone phosphate Gyceraldehyde-3-phosphate 32 Stage 2. Energy-yielding stage • Each glyceraldehyde-3-phosphate molecule is ultimately converted to pyruvate. • Redox reactions produce two molecules of nicotinamide adenine dinucleotide (NADH). • Four ATP molecules are produced by substrate-level phosphorylation. 33 Figure 13.17 34 Summary: Embden-MeyerhoffParnas Pathway glucose 2 pyruvate 2ATP 2NADH + 2H+ 35 35 The Entner-Doudoroff Pathway Probably evolved earlier than EMP pathway. Glucose is activated by one phosphorylation reaction, and then dehydrogenated to 6phosphogluconate. - Then dehydrated and cleaved to pyruvate and glyceraldedyde-3-P, which enters the EMP pathway to form pyruvate The ED pathway produces 1 ATP, 1 NADH, and 1 NADPH. 36 Figure 13.19 37 The Entner-Doudoroff Pathway reactions of pentose phosphate pathway reactions of glycolytic pathway reactions of EmbdenMeyerhoff pathway Figure 9.8 38 38 Many gut flora use the ED pathway as their primary glycolytic pathway. - E. coli feeds on gluconate from mucus secretion (Fig. 13.18A). - Bacteroides thetaiotaomicron actually induce colonic production of the mucus. - They literally “farm” it. Another bacterium, Zymomonas, ferments the blue agave plant. - A product is the Mexican beverage pulque. 39 Summary: Entner-Doudoroff Pathway glucose 1 ATP 1 NADPH 1 NADH 40 Fermentation Fermentation is the completion of catabolism without the electron transport system and a terminal electron acceptor. - The hydrogens from NADH + H+ are transferred back onto the products of pyruvate, forming partly oxidized fermentation products. Most fermentations do not generate ATP beyond that produced by substrate-level phosphorylation. - Microbes compensate for the low efficiency of fermentation by consuming large quantities of substrate and excreting large quantities of products. 41 Fermentation Pathways Homolactic fermentation - Produces two molecules of lactic acid Ethanolic fermentation - Produces two molecules of ethanol and two CO2 Heterolactic fermentation - Produces one molecule of lactic acid, one ethanol, and one CO2 Mixed-acid fermentation - Produces acetate, formate, lactate, and succinate, as well as ethanol, H2, and CO2 42 Figure 13.21 43 The Tricarboxylic Acid Cycle The TCA cycle is also known as the Krebs cycle or citric acid cycle. - In prokaryotes, it occurs in the cytoplasm. - In eukaryotes, it occurs in the mitochondria. Glucose catabolism connects with the TCA cycle through pyruvate breakdown to acetyl-COA and CO2. - Acetyl-CoA enters the TCA cycle by condensing with the 4-C oxaloacetate to form citrate. 44 Figure 13.24 45 Conversion of pyruvate to acetyl-CoA is catalyzed by a very large multisubunit enzyme called the pyruvate dehydrogenase complex (PDC). - The net reaction is: Pyruvate + NAD+ + CoA Acetyl-CoA + CO2 + NADH + H+ 46 47 The Tricarboxylic Acid Cycle For each pyruvate oxidized: - 3 CO2 are produced by decarboxylation - 4 NADH and 1 FADH2 are produced by redox reactions - 1 ATP is produced by substrate-level phosphorylation - Some cells make GTP instead. - However, GTP and ATP are equivalent in stored energy. 48 After the completion of the TCA cycle, all the carbons of glucose have been released as waste CO2. - However, the metabolic pathway is not completed until the electrons carried by the coenzymes (NADH and FADH2) are donated to a terminal electron acceptor. The overall process of electron transport and ATP generation is termed oxidative phosphorylation. 49 The TCA Cycle Overall process of oxidative breakdown of substrate to oxidative phophorylation is called respiration The TCA cycle was originally developed to provide intermediates to biosynthetic pathways •a-ketoglutarate Glutamate and glutamine •Oxaloacetate aspartate Amphibolic pathway 50 Glucose Protons Summary: TCA Cycle 10 NADH + H+ 2 FADH2 4 ATP 10 NADH + H+ + 2FADH2 10 NAD+ + 2FAD+ + 24H+ + 24e- 51