* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Central Nervous System
Neuroplasticity wikipedia , lookup
Neuropsychology wikipedia , lookup
Metastability in the brain wikipedia , lookup
Biological neuron model wikipedia , lookup
Synaptogenesis wikipedia , lookup
Single-unit recording wikipedia , lookup
Clinical neurochemistry wikipedia , lookup
Synaptic gating wikipedia , lookup
Holonomic brain theory wikipedia , lookup
Neural engineering wikipedia , lookup
Microneurography wikipedia , lookup
Feature detection (nervous system) wikipedia , lookup
Molecular neuroscience wikipedia , lookup
Development of the nervous system wikipedia , lookup
Nervous system network models wikipedia , lookup
Neuroregeneration wikipedia , lookup
Circumventricular organs wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
Chapter 7 The Nervous System Lecture Presentation by Patty Bostwick-Taylor Florence-Darlington Technical College © 2015 Pearson Education, Inc. Functions of the Nervous System 1. Sensory input—gathering information  To monitor changes occurring inside and outside the body  Changes  stimuli 2. Integration  To process and interpret sensory input and decide whether action is needed © 2015 Pearson Education, Inc. Functions of the Nervous System 3. Motor output  A response to integrated stimuli  The response activates muscles or glands © 2015 Pearson Education, Inc. Figure 7.1 The nervous system’s functions. Sensory input Sensory receptor Motor output Brain and spinal cord Effector © 2015 Pearson Education, Inc. Organization of the Nervous System  Nervous system is classified based on:  Structures (structural classification)  Activities (functional classification) © 2015 Pearson Education, Inc. Structural Classification of the Nervous System  Central nervous system (CNS)  Organs  Brain  Spinal cord  Function  Integration; command center  Interpret incoming sensory information  Issues outgoing instructions © 2015 Pearson Education, Inc. Structural Classification of the Nervous System  Peripheral nervous system (PNS)  Nerves extending from the brain and spinal cord  Spinal nerves—carry impulses to and from the spinal cord  Cranial nerves—carry impulses to and from the brain  Functions  Serve as communication lines among sensory organs, the brain and spinal cord, and glands or muscles © 2015 Pearson Education, Inc. Figure 7.2 Organization of the nervous system. Central Nervous System (brain and spinal cord) Peripheral Nervous System (cranial and spinal nerves) Sensory (afferent) Sense organs Motor (efferent) Somatic (voluntary) Autonomic (involuntary) Skeletal muscles Cardiac and smooth muscle, glands Parasympathetic © 2015 Pearson Education, Inc. Sympathetic Functional Classification of the Peripheral Nervous System  Sensory (afferent) division  Nerve fibers that carry information to the central nervous system  Somatic sensory fibers carry information from the skin, skeletal muscles, and joints  Visceral sensory fibers carry information from visceral organs  Motor (efferent) division  Nerve fibers that carry impulses away from the central nervous system organs © 2015 Pearson Education, Inc. Figure 7.2 Organization of the nervous system. Central Nervous System (brain and spinal cord) Peripheral Nervous System (cranial and spinal nerves) Sensory (afferent) Sense organs Motor (efferent) Somatic (voluntary) Autonomic (involuntary) Skeletal muscles Cardiac and smooth muscle, glands Parasympathetic © 2015 Pearson Education, Inc. Sympathetic Functional Classification of the Peripheral Nervous System  Motor (efferent) division (continued)  Two subdivisions  Somatic nervous system  voluntary  Consciously controls skeletal muscles  Autonomic nervous system  involuntary  Automatically controls smooth and cardiac muscles and glands  Further divided into the sympathetic and parasympathetic nervous systems © 2015 Pearson Education, Inc. Nervous Tissue: Support Cells  Support cells in the CNS are grouped together as neuroglia  General functions  Support  Insulate  Protect neurons © 2015 Pearson Education, Inc. Nervous Tissue: Support Cells  CNS glial cells: astrocytes  Abundant, star-shaped cells  Brace neurons  Form barrier between capillaries and neurons  Control the chemical environment of the brain © 2015 Pearson Education, Inc. Figure 7.3a Supporting (glial) cells of nervous tissue. Capillary Neuron Astrocyte (a) Astrocytes are the most abundant and versatile neuroglia. © 2015 Pearson Education, Inc. Nervous Tissue: Support Cells  CNS glial cells: microglia  Spiderlike phagocytes  Dispose of debris © 2015 Pearson Education, Inc. Figure 7.3b Supporting (glial) cells of nervous tissue. Neuron Microglial cell (b) Microglial cells are phagocytes that defend CNS cells. © 2015 Pearson Education, Inc. Nervous Tissue: Support Cells  CNS glial cells: ependymal cells  Line cavities of the brain and spinal cord  Cilia assist with circulation of cerebrospinal fluid © 2015 Pearson Education, Inc. Figure 7.3c Supporting (glial) cells of nervous tissue. Fluid-filled cavity Ependymal cells Brain or spinal cord tissue (c) Ependymal cells line cerebrospinal fluid-filled cavities. © 2015 Pearson Education, Inc. Nervous Tissue: Support Cells  CNS glial cells: oligodendrocytes  Wrap around nerve fibers in the central nervous system  Produce myelin sheaths © 2015 Pearson Education, Inc. Figure 7.3d Supporting (glial) cells of nervous tissue. Myelin sheath Process of oligodendrocyte Nerve fibers (d) Oligodendrocytes have processes that form myelin sheaths around CNS nerve fibers. © 2015 Pearson Education, Inc. Nervous Tissue: Support Cells  PNS glial cells  Satellite cells  Protect neuron cell bodies  Schwann cells  Form myelin sheath in the peripheral nervous system © 2015 Pearson Education, Inc. Figure 7.3e Supporting (glial) cells of nervous tissue. Satellite cells Cell body of neuron Schwann cells (forming myelin sheath) Nerve fiber (e) Satellite cells and Schwann cells (which form myelin) surround neurons in the PNS. © 2015 Pearson Education, Inc. Nervous Tissue: Neurons  Neurons  nerve cells  Cells specialized to transmit messages  Major regions of neurons  Cell body—nucleus and metabolic center of the cell  Processes—fibers that extend from the cell body © 2015 Pearson Education, Inc. Nervous Tissue: Neurons  Cell body  Nissl bodies  Specialized rough endoplasmic reticulum  Neurofibrils  Intermediate cytoskeleton  Maintains cell shape  Nucleus with large nucleolus © 2015 Pearson Education, Inc. Figure 7.4a Structure of a typical motor neuron. Mitochondrion Dendrite Cell body Nissl substance Axon hillock Axon Neurofibrils Nucleus Collateral branch One Schwann cell Axon terminal (a) © 2015 Pearson Education, Inc. Node of Ranvier Schwann cells, forming the myelin sheath on axon Figure 7.4b Structure of a typical motor neuron. Neuron cell body Dendrite (b) © 2015 Pearson Education, Inc. Nervous Tissue: Neurons  Processes outside the cell body  Dendrites—conduct impulses toward the cell body  Neurons may have hundreds of dendrites  Axons—conduct impulses away from the cell body  Neurons have only one axon arising from the cell body at the axon hillock © 2015 Pearson Education, Inc. Figure 7.4a Structure of a typical motor neuron. Mitochondrion Dendrite Cell body Nissl substance Axon hillock Axon Neurofibrils Nucleus Collateral branch One Schwann cell Axon terminal (a) © 2015 Pearson Education, Inc. Node of Ranvier Schwann cells, forming the myelin sheath on axon Nervous Tissue: Neurons  Axons  End in axon terminals  Axon terminals contain vesicles with neurotransmitters  Axon terminals are separated from the next neuron by a gap  Synaptic cleft—gap between adjacent neurons  Synapse—junction between nerves © 2015 Pearson Education, Inc. Nervous Tissue: Neurons  Myelin sheath—whitish, fatty material covering axons  Schwann cells—produce myelin sheaths in jelly roll– like fashion around axons (PNS)  Nodes of Ranvier—gaps in myelin sheath along the axon  Oligodendrocytes—produce myelin sheaths around axons of the CNS  Myelin sheaths speed the nerve impulse transmission © 2015 Pearson Education, Inc. Figure 7.5 Relationship of Schwann cells to axons in the peripheral nervous system. Schwann cell cytoplasm Axon Schwann cell plasma membrane (a) Schwann cell nucleus (b) Neurilemma Myelin sheath (c) © 2015 Pearson Education, Inc. Neuron Cell Body Location  Most neuron cell bodies are found in the central nervous system  Gray matter—cell bodies and unmyelinated fibers  Nuclei—clusters of cell bodies within the white matter of the central nervous system  Ganglia—collections of cell bodies outside the central nervous system © 2015 Pearson Education, Inc. Neuron Cell Body Location  Tracts—bundles of nerve fibers in the CNS  Nerves—bundles of nerve fibers in the PNS  White matter—collections of myelinated fibers (tracts)  Gray matter—collections of mostly unmyelinated fibers and cell bodies © 2015 Pearson Education, Inc. Functional Classification of Neurons  Sensory (afferent) neurons  Carry impulses from the sensory receptors to the CNS  Cutaneous sense organs  Proprioceptors—detect stretch or tension © 2015 Pearson Education, Inc. Figure 7.6 Neurons classified by function. Central process (axon) Sensory Spinal cord Cell neuron (central nervous system) body Ganglion Dendrites Peripheral process (axon) Afferent transmission Interneuron (association neuron) Peripheral nervous system Receptors Efferent transmission Motor neuron To effectors (muscles and glands) © 2015 Pearson Education, Inc. Figure 7.7a Types of sensory receptors. (a) Free nerve endings (pain and temperature receptors) © 2015 Pearson Education, Inc. Figure 7.7b Types of sensory receptors. (b) Meissner’s corpuscle (touch receptor) © 2015 Pearson Education, Inc. Figure 7.7c Types of sensory receptors. (c) Lamellar corpuscle (deep pressure receptor) © 2015 Pearson Education, Inc. Figure 7.7d Types of sensory receptors. (d) Golgi tendon organ (proprioceptor) © 2015 Pearson Education, Inc. Figure 7.7e Types of sensory receptors. (e) Muscle spindle (proprioceptor) © 2015 Pearson Education, Inc. Functional Classification of Neurons  Motor (efferent) neurons  Carry impulses from the central nervous system to viscera, muscles, or glands  Interneurons (association neurons)  Found in neural pathways in the central nervous system  Connect sensory and motor neurons © 2015 Pearson Education, Inc. Figure 7.6 Neurons classified by function. Central process (axon) Sensory Spinal cord Cell neuron (central nervous system) body Ganglion Dendrites Peripheral process (axon) Afferent transmission Interneuron (association neuron) Peripheral nervous system Receptors Efferent transmission Motor neuron To effectors (muscles and glands) © 2015 Pearson Education, Inc. Structural Classification of Neurons  Structural classification is based on number of processes extending from the cell body  Multipolar neurons—many extensions from the cell body  All motor and interneurons are multipolar  Most common structure © 2015 Pearson Education, Inc. Figure 7.8a Classification of neurons on the basis of structure. Cell body Axon Dendrites (a) Multipolar neuron © 2015 Pearson Education, Inc. Structural Classification of Neurons  Bipolar neurons—one axon and one dendrite  Located in special sense organs, such as nose and eye  Rare in adults © 2015 Pearson Education, Inc. Figure 7.8b Classification of neurons on the basis of structure. Cell body Dendrite (b) Bipolar neuron © 2015 Pearson Education, Inc. Axon Structural Classification of Neurons  Unipolar neurons—have a short single process leaving the cell body  Sensory neurons found in PNS ganglia  Conduct impulses both toward and away from the cell body © 2015 Pearson Education, Inc. Figure 7.8c Classification of neurons on the basis of structure. Dendrites Cell body Short single process Axon Peripheral process (c) Unipolar neuron © 2015 Pearson Education, Inc. Central process Functional Properties of Neurons  Irritability  Ability to respond to a stimulus and convert it to a nerve impulse  Conductivity  Ability to transmit the impulse to other neurons, muscles, or glands © 2015 Pearson Education, Inc. Nerve Impulses  Resting neuron  The plasma membrane at rest is polarized  As long as inside is more negative than outside, the cell stays at rest  Fewer positive ions are inside the cell than outside the cell  K is the major positive ion inside the cell  Na is the major positive ion outside the cell © 2015 Pearson Education, Inc. Figure 7.9 The nerve impulse. Slide 2 [Na+] [K+] © 2015 Pearson Education, Inc. 1 Resting membrane is polarized. In the resting state, the external face of the membrane is slightly positive; its internal face is slightly negative. The chief extracellular ion is sodium (Na+), whereas the chief intracellular ion is potassium (K+). The membrane is relatively impermeable to both ions. Nerve Impulses  Action potential initiation and generation  A stimulus depolarizes the neuron’s membrane  The membrane is now permeable to sodium as sodium channels open  A depolarized membrane allows sodium (Na) to flow inside the membrane © 2015 Pearson Education, Inc. Figure 7.9 The nerve impulse. Na+ Na+ © 2015 Pearson Education, Inc. Slide 3 2 Stimulus initiates local depolarization. A Stimulus changes the permeability of a local “patch” of the membrane, and sodium ions diffuse rapidly into the cell. This changes the polarity of the membrane (the inside becomes more positive; the outside becomes more negative) at that site. Nerve Impulses  Action potential initiation and generation  A stimulus leads to the movement of ions, which initiates an action potential in the neuron  A graded potential (localized depolarization) exists where the inside of the membrane is more positive and the outside is less positive  If the stimulus is strong enough and sodium influx great enough, local depolarization activates the neuron to conduct an action potential (nerve impulse) © 2015 Pearson Education, Inc. Figure 7.9 The nerve impulse. Na+ Na+ © 2015 Pearson Education, Inc. Slide 4 3 Depolarization and generation of an action potential. If the stimulus is strong enough, depolarization causes membrane polarity to be completely reversed and an action potential is initiated. Nerve Impulses  Propagation of the action potential  If enough sodium enters the cell, the action potential (nerve impulse) starts and is propagated over the entire axon  All-or-none response means the nerve impulse either is propagated or is not  Fibers with myelin sheaths conduct nerve impulses more quickly © 2015 Pearson Education, Inc. Figure 7.9 The nerve impulse. Slide 5 4 Propagation of the action potential. Depolarization of the first membrane patch causes permeability changes in the adjacent membrane, and the events described in step 2 are repeated. Thus, the action potential propagates rapidly along the entire length of the membrane. © 2015 Pearson Education, Inc. Nerve Impulses  Repolarization  Potassium ions rush out of the neuron after sodium ions rush in, repolarizing the membrane  Repolarization involves restoring the inside of the membrane to a negative charge and the outer surface to a positive charge  Until repolarization is complete, a neuron cannot conduct another nerve impulse © 2015 Pearson Education, Inc. Figure 7.9 The nerve impulse. K+ K+ © 2015 Pearson Education, Inc. Slide 6 5 Repolarization. Potassium ions diffuse out of the cell as the membrane permeability changes again, restoring the negative charge on the inside of the membrane and the positive charge on the outside surface. Repolarization occurs in the same direction as depolarization. Nerve Impulses  Repolarization  Initial ionic conditions are restored using the sodiumpotassium pump  This pump, using ATP, restores the original configuration  Three sodium ions are ejected from the cell while two potassium ions are returned to the cell © 2015 Pearson Education, Inc. Figure 7.9 The nerve impulse. Na+ Na+ Na+ Na+ Diffusion K+ Diffusion Cell exterior Slide 7 Cell interior © 2015 Pearson Education, Inc. K+ K+ K+ K+ Na+ – K+ pump 6 Initial ionic conditions restored. The ionic conditions of the resting state are restored later by the activity of the Plasma membrane sodium-potassium pump. Three sodium ions are ejected for every two potassium ions carried back into the cell. Transmission of a Signal at Synapses  When the action potential reaches the axon terminal, the electrical charge opens calcium channels © 2015 Pearson Education, Inc. Figure 7.10 How neurons communicate at chemical synapses. Slide 2 Axon of transmitting neuron Receiving neuron 1 Action Dendrite Axon terminal © 2015 Pearson Education, Inc. potential arrives. Vesicles Synaptic cleft Transmission of a Signal at Synapses  Calcium, in turn, causes the tiny vesicles containing the neurotransmitter chemical to fuse with the axonal membrane © 2015 Pearson Education, Inc. Figure 7.10 How neurons communicate at chemical synapses. Slide 3 2 Vesicle Transmitting neuron fuses with plasma membrane. Synaptic cleft Ion channels Receiving neuron © 2015 Pearson Education, Inc. Neurotransmitter molecules Transmission of a Signal at Synapses  The entry of calcium into the axon terminal causes porelike openings to form, releasing the transmitter © 2015 Pearson Education, Inc. Figure 7.10 How neurons communicate at chemical synapses. Slide 4 2 Vesicle Transmitting neuron fuses with plasma membrane. 3 Neurotrans- mitter is released into synaptic cleft. Synaptic cleft Ion channels Receiving neuron © 2015 Pearson Education, Inc. Neurotransmitter molecules Transmission of a Signal at Synapses  The neurotransmitter molecules diffuse across the synapse and bind to receptors on the membrane of the next neuron © 2015 Pearson Education, Inc. Figure 7.10 How neurons communicate at chemical synapses. Slide 5 2 Vesicle Transmitting neuron 4 Neurotransfuses with 3 Neurotrans- mitter binds plasma membrane. mitter is released into synaptic cleft. Synaptic cleft Ion channels Receiving neuron © 2015 Pearson Education, Inc. to receptor on receiving neuron’s membrane. Neurotransmitter molecules Transmission of a Signal at Synapses  If enough neurotransmitter is released, graded potential will be generated  Eventually an action potential (nerve impulse) will occur in the neuron beyond the synapse © 2015 Pearson Education, Inc. Figure 7.10 How neurons communicate at chemical synapses. Slide 6 Neurotransmitter Receptor Na+ 5 Ion channel opens. © 2015 Pearson Education, Inc. Transmission of a Signal at Synapses  The electrical changes prompted by neurotransmitter binding are brief  The neurotransmitter is quickly removed from the synapse by either:  Reuptake  Enzymatic activity  Transmission of an impulse is electrochemical  Transmission down neuron is electrical  Transmission to next neuron is chemical © 2015 Pearson Education, Inc. Figure 7.10 How neurons communicate at chemical synapses. Slide 7 Neurotransmitter is broken down and released. Na+ 6 Ion channel closes. © 2015 Pearson Education, Inc. The Reflex Arc  Reflexes are:  Rapid  Predictable  Involuntary responses to a stimulus  Reflexes occur over neural pathways called reflex arcs © 2015 Pearson Education, Inc. Figure 7.11a Simple reflex arcs. Stimulus at distal end of neuron 1 2 Receptor 5 Effector (a) Five basic elements of reflex arc © 2015 Pearson Education, Inc. Spinal cord (in cross section) Skin Sensory neuron 4 Motor neuron 3 Integration center Interneuron The Reflex Arc  Somatic reflexes  Reflexes that stimulate the skeletal muscles  Example: pulling your hand away from a hot object  Autonomic reflexes  Regulate the activity of smooth muscles, the heart, and glands  Example: regulation of smooth muscles, heart and blood pressure, glands, digestive system © 2015 Pearson Education, Inc. The Reflex Arc  Five elements of a reflex: 1. Sensory receptor—reacts to a stimulus 2. Sensory neuron—carries message to the integration center 3. Integration center (CNS)—processes information and directs motor output 4. Motor neuron—carries message to an effector 5. Effector organ—is the muscle or gland to be stimulated © 2015 Pearson Education, Inc. Figure 7.11a Simple reflex arcs. Slide 6 Stimulus at distal end of neuron 1 2 Receptor 5 Effector (a) Five basic elements of reflex arc © 2015 Pearson Education, Inc. Spinal cord (in cross section) Skin Sensory neuron 4 Motor neuron 3 Integration center Interneuron Two-Neuron Reflex Arc  Two-neuron reflex arcs  Simplest type  Example: patellar (knee-jerk) reflex © 2015 Pearson Education, Inc. Figure 7.11b Simple reflex arcs. Slide 1 1 Sensory (stretch) receptor 2 Sensory (afferent) neuron 3 4 Motor (efferent) neuron 5 Effector organ (b) Two neuron reflex arc © 2015 Pearson Education, Inc. Three-Neuron Reflex Arc  Three-neuron reflex arcs  Consists of five elements: receptor, sensory neuron, interneuron, motor neuron, and effector  Example: flexor (withdrawal) reflex © 2015 Pearson Education, Inc. Figure 7.11c Simple reflex arcs. 1 Slide 1 Sensory receptor 2 Sensory (afferent) neuron 3 4 5 (c) Three-neuron reflex arc © 2015 Pearson Education, Inc. Motor (efferent) neuron Effector organ Interneuron Central Nervous System (CNS)  CNS develops from the embryonic neural tube  The neural tube becomes the brain and spinal cord  The opening of the neural tube becomes the ventricles  Four chambers within the brain  Filled with cerebrospinal fluid © 2015 Pearson Education, Inc. Figure 7.12a Development and regions of the human brain. (a) 13 weeks © 2015 Pearson Education, Inc. Cerebral hemisphere Outline of diencephalon Midbrain Cerebellum Brain stem Figure 7.18a Ventricles and location of the cerebrospinal fluid. Lateral ventricle Anterior horn Septum pellucidum Interventricular foramen Inferior horn Third ventricle Cerebral aqueduct Fourth ventricle Lateral aperture Central canal (a) Anterior view © 2015 Pearson Education, Inc. Regions of the Brain  Cerebral hemispheres (cerebrum)  Diencephalon  Brain stem  Cerebellum © 2015 Pearson Education, Inc. Figure 7.12b Development and regions of the human brain. Cerebral hemisphere Diencephalon Cerebellum (b) Adult brain © 2015 Pearson Education, Inc. Brain stem Table 7.1 Functions of Major Brain Regions (1 of 2) © 2015 Pearson Education, Inc. Table 7.1 Functions of Major Brain Regions (2 of 2) © 2015 Pearson Education, Inc. Regions of the Brain: Cerebrum  Cerebral hemispheres are paired (left & right) superior parts of the brain  Includes more than half of the brain mass  The surface is made of ridges (gyri) and grooves (sulci)  Three main regions of cerebral hemisphere 1. Cortex (gray matter) 2. White matter 3. Basal nuclei (deep pockets of gray matter) © 2015 Pearson Education, Inc. Figure 7.13a Left lateral view of the brain. Precentral gyrus Central sulcus Postcentral gyrus Parietal lobe Parieto-occipital sulcus (deep) Frontal lobe Lateral sulcus Occipital lobe Temporal lobe Cerebellum Pons Cerebral cortex (gray matter) Gyrus Sulcus Fissure (a) (a deep sulcus) © 2015 Pearson Education, Inc. Cerebral white matter Medulla oblongata Spinal cord Regions of the Brain: Cerebrum  Lobes of the cerebrum  Fissures (deep grooves) divide the cerebrum into lobes  Surface lobes of the cerebrum  Frontal lobe  Parietal lobe  Occipital lobe  Temporal lobe © 2015 Pearson Education, Inc. Figure 7.13b Left lateral view of the brain. Parietal lobe Left cerebral hemisphere Frontal lobe Occipital lobe Temporal lobe Cephalad (b) © 2015 Pearson Education, Inc. Caudal Brain stem Cerebellum Regions of the Brain: Cerebrum  Specialized areas of the cerebrum  Primary somatic sensory area  Receives impulses from the body’s sensory receptors  Pain, temperature, light touch  Located in parietal lobe posterior to central sulcus  Sensory homunculus is a spatial map  Left side of the primary somatic sensory area receives impulses from right side (and vice versa) © 2015 Pearson Education, Inc. Figure 7.13c Left lateral view of the brain. Primary motor area Premotor area Speech/language (outlined by dashes) Posterior association area • Problem solving • Language comprehension Broca’s area (motor speech) Olfactory area © 2015 Pearson Education, Inc. Primary somatic sensory area Gustatory area (taste) Anterior association area • Working memory and judgment (c) Central sulcus Visual area Auditory area Regions of the Brain: Cerebrum  Cerebral areas involved in special senses  Visual area (occipital lobe)  Auditory area (temporal lobe)  Olfactory area (temporal lobe) © 2015 Pearson Education, Inc. Regions of the Brain: Cerebrum  Specialized areas of the cerebrum  Primary motor area  Sends impulses to skeletal muscles  Located in frontal lobe  Motor neurons form corticospinal (pyramidal) tract, which descends to spinal cord  Motor homunculus is a spatial map © 2015 Pearson Education, Inc. Regions of the Brain: Cerebrum  Broca’s area  Involved in our ability to speak  Usually in left hemisphere  Other specialized areas  Anterior and posterior association areas  Speech area © 2015 Pearson Education, Inc. Regions of the Brain: Cerebrum  Layers of the cerebrum  Gray matter—outer layer in the cerebral cortex; composed mostly of neuron cell bodies  White matter—fiber tracts deep to the gray matter  Corpus callosum connects hemispheres  Basal nuclei (ganglia)—islands of gray matter buried within the white matter © 2015 Pearson Education, Inc. Figure 7.13a Left lateral view of the brain. Precentral gyrus Central sulcus Postcentral gyrus Parietal lobe Parieto-occipital sulcus (deep) Frontal lobe Lateral sulcus Occipital lobe Temporal lobe Cerebellum Pons Cerebral cortex (gray matter) Gyrus Sulcus Fissure (a) (a deep sulcus) © 2015 Pearson Education, Inc. Cerebral white matter Medulla oblongata Spinal cord Figure 7.15 Frontal section of the brain showing commissural, association, and projection fibers running through the cerebrum and the lower CNS. Longitudinal fissure Lateral ventricle Basal nuclei (basal ganglia) Superior Association fibers Commissural fibers (corpus callosum) Corona radiata Fornix Thalamus Internal capsule Third ventricle Pons Medulla oblongata © 2015 Pearson Education, Inc. Projection fibers Regions of the Brain: Diencephalon  Sits on top of the brain stem  Enclosed by the cerebral hemispheres  Made of three parts: 1. Thalamus 2. Hypothalamus 3. Epithalamus © 2015 Pearson Education, Inc. Figure 7.12b Development and regions of the human brain. Cerebral hemisphere Diencephalon Cerebellum (b) Adult brain © 2015 Pearson Education, Inc. Brain stem Figure 7.16a Diencephalon and brain stem structures. Cerebral hemisphere Corpus callosum Third ventricle Choroid plexus of third ventricle Occipital lobe of cerebral hemisphere Thalamus (encloses third ventricle) Pineal gland (part of epithalamus) Anterior commissure Hypothalamus Corpora quadrigemina Optic chiasma Cerebral aqueduct Pituitary gland Cerebral peduncle (a) Mammillary body Pons Medulla oblongata Spinal cord © 2015 Pearson Education, Inc. Fourth ventricle Choroid plexus Cerebellum Midbrain Figure 7.16b Diencephalon and brain stem structures. Radiations to cerebral cortex Visual impulses Reticular formation Ascending general sensory tracts (touch, pain, temperature) (b) © 2015 Pearson Education, Inc. Auditory impulses Descending motor projections to spinal cord Regions of the Brain: Diencephalon  Thalamus  Surrounds the third ventricle  The relay station for sensory impulses  Transfers impulses to the correct part of the cortex for localization and interpretation © 2015 Pearson Education, Inc. Regions of the Brain: Diencephalon  Hypothalamus  Under the thalamus  Important autonomic nervous system center  Helps regulate body temperature  Controls water balance  Regulates metabolism  Houses the limbic center for emotions  Regulates the nearby pituitary gland  Houses mammillary bodies for olfaction (smell) © 2015 Pearson Education, Inc. Regions of the Brain: Diencephalon  Epithalamus  Forms the roof of the third ventricle  Houses the pineal body (an endocrine gland)  Includes the choroid plexus—forms cerebrospinal fluid © 2015 Pearson Education, Inc. Regions of the Brain: Brain Stem  Attaches to the spinal cord  Parts of the brain stem  Midbrain  Pons  Medulla oblongata © 2015 Pearson Education, Inc. Figure 7.16a Diencephalon and brain stem structures. Cerebral hemisphere Corpus callosum Third ventricle Choroid plexus of third ventricle Occipital lobe of cerebral hemisphere Thalamus (encloses third ventricle) Pineal gland (part of epithalamus) Anterior commissure Hypothalamus Corpora quadrigemina Optic chiasma Cerebral aqueduct Pituitary gland Cerebral peduncle (a) Mammillary body Pons Medulla oblongata Spinal cord © 2015 Pearson Education, Inc. Fourth ventricle Choroid plexus Cerebellum Midbrain Regions of the Brain: Brain Stem  Midbrain  Composed mostly of tracts of nerve fibers  Two bulging fiber tracts, cerebral peduncles, convey ascending and descending impulses  Four rounded protrusions, corpora quadrigemina, visual and auditory reflex centers © 2015 Pearson Education, Inc. Regions of the Brain: Brain Stem  Pons  The bulging center part of the brain stem  Mostly composed of fiber tracts  Includes nuclei involved in the control of breathing © 2015 Pearson Education, Inc. Regions of the Brain: Brain Stem  Medulla oblongata  The lowest part of the brain stem  Merges into the spinal cord  Includes important fiber tracts  Contains important control centers  Heart rate control  Blood pressure regulation  Breathing  Swallowing  Vomiting © 2015 Pearson Education, Inc. Regions of the Brain: Brain Stem  Reticular formation  Diffuse mass of gray matter along the brain stem  Involved in motor control of visceral organs  Reticular activating system (RAS)  Plays a role in awake/sleep cycles and consciousness  Filter for incoming sensory information © 2015 Pearson Education, Inc. Figure 7.16b Diencephalon and brain stem structures. Radiations to cerebral cortex Visual impulses Reticular formation Ascending general sensory tracts (touch, pain, temperature) (b) © 2015 Pearson Education, Inc. Auditory impulses Descending motor projections to spinal cord Regions of the Brain: Cerebellum  Two hemispheres with convoluted surfaces  Controls balance and equilibrium  Provides precise timing for skeletal muscle activity and coordination of body movements © 2015 Pearson Education, Inc. Figure 7.16a Diencephalon and brain stem structures. Cerebral hemisphere Corpus callosum Third ventricle Choroid plexus of third ventricle Occipital lobe of cerebral hemisphere Thalamus (encloses third ventricle) Pineal gland (part of epithalamus) Anterior commissure Hypothalamus Corpora quadrigemina Optic chiasma Cerebral aqueduct Pituitary gland Cerebral peduncle (a) Mammillary body Pons Medulla oblongata Spinal cord © 2015 Pearson Education, Inc. Fourth ventricle Choroid plexus Cerebellum Midbrain Protection of the Central Nervous System  Scalp and skin  Skull and vertebral column  Meninges  Cerebrospinal fluid (CSF)  Blood-brain barrier © 2015 Pearson Education, Inc. Figure 7.17a Meninges of the brain. Skin of scalp Periosteum Bone of skull Superior sagittal sinus Subdural space Subarachnoid space (a) © 2015 Pearson Education, Inc. Periosteal Meningeal Dura mater Arachnoid mater Pia mater Arachnoid villus Blood vessel Falx cerebri (in longitudinal fissure only) Meninges  Dura mater  Tough outermost layer  Double-layered external covering  Periosteum—attached to inner surface of the skull  Meningeal layer—outer covering of the brain  Folds inward in several areas  Falx cerebri  Tentorium cerebelli © 2015 Pearson Education, Inc. Meninges  Arachnoid layer  Middle layer  Weblike extensions span the subarachnoid space  Arachnoid villi reabsorb cerebrospinal fluid  Pia mater  Internal layer  Clings to the surface of the brain © 2015 Pearson Education, Inc. Figure 7.17b Meninges of the brain. Skull Scalp Occipital lobe Tentorium cerebelli Cerebellum (b) Arachnoid mater over medulla oblongata © 2015 Pearson Education, Inc. Superior sagittal sinus Dura mater Transverse sinus Temporal bone Cerebrospinal Fluid (CSF)  Similar to blood plasma composition  Formed by the choroid plexus  Choroid plexuses–capillaries in the ventricles of the brain  Forms a watery cushion to protect the brain  Circulated in arachnoid space, ventricles, and central canal of the spinal cord © 2015 Pearson Education, Inc. Cerebrospinal Fluid (CSF) Pathway of Flow 1. CSF is produced by the choroid plexus of each ventricle. 2. CSF flows through the ventricles and into the subarachnoid space via the median and lateral apertures. Some CSF flows through the central canal of the spinal cord. 3. CSF flows through the subarachnoid space. 4. CSF is absorbed into the dural venous sinuses via the arachnoid villi. © 2015 Pearson Education, Inc. Figure 7.18a Ventricles and location of the cerebrospinal fluid. Lateral ventricle Anterior horn Septum pellucidum Interventricular foramen Inferior horn Third ventricle Cerebral aqueduct Fourth ventricle Lateral aperture Central canal (a) Anterior view © 2015 Pearson Education, Inc. Figure 7.18b Ventricles and location of the cerebrospinal fluid. Lateral ventricle Anterior horn Posterior horn Interventricular foramen Third ventricle Inferior horn Cerebral aqueduct Fourth ventricle Median aperture Central canal Lateral aperture (b) Left lateral view © 2015 Pearson Education, Inc. Figure 7.18c Ventricles and location of the cerebrospinal fluid. 4 Superior sagittal sinus Arachnoid villus Subarachnoid space Arachnoid mater Meningeal dura mater Periosteal dura mater Choroid plexus Corpus callosum 1 Interventricular foramen Right lateral ventricle (deep to cut) Third ventricle 3 Choroid plexus of fourth ventricle Cerebral aqueduct Lateral aperture Fourth ventricle Median aperture Central canal of spinal cord (c) CSF circulation 1 CSF is produced by the 2 choroid plexus of each ventricle. 2 CSF flows through the ventricles and into the subarachnoid space via the median and lateral apertures. Some CSF flows through the central canal of the spinal cord. 3 CSF flows through the subarachnoid space. 4 CSF is absorbed into the dural venous sinuses via the arachnoid villi. © 2015 Pearson Education, Inc. Hydrocephalus in a Newborn  Hydrocephalus  CSF accumulates and exerts pressure on the brain if not allowed to drain  Possible in an infant because the skull bones have not yet fused  In adults, this situation results in brain damage © 2015 Pearson Education, Inc. Figure 7.19 Hydrocephalus in a newborn. © 2015 Pearson Education, Inc. Blood-Brain Barrier  Includes the least permeable capillaries of the body  Excludes many potentially harmful substances  Useless as a barrier against some substances  Fats and fat-soluble molecules  Respiratory gases  Alcohol  Nicotine  Anesthesia © 2015 Pearson Education, Inc. Blood-Brain Barrier  Water-soluble items that can travel through barrier:  Water  Glucose  Essential amino acids  Items prevented from passing through:  Metabolic wastes  Most drugs  Nonessential amino acids  Potassium ions © 2015 Pearson Education, Inc. Traumatic Brain Injuries  Concussion  Slight brain injury  No permanent brain damage  Contusion  Nervous tissue destruction occurs  Nervous tissue does not regenerate  Cerebral edema  Swelling from the inflammatory response  May compress and kill brain tissue © 2015 Pearson Education, Inc. Cerebrovascular Accident (CVA), or Stroke  Results from a ruptured blood vessel supplying a region of the brain  Brain tissue supplied with oxygen from that blood source dies  Loss of some functions or death may result  Hemiplegia—one-sided paralysis  Aphasia—damage to speech center in left hemisphere  Transient ischemic attack (TIA)—temporary brain ischemia (restriction of blood flow)  Warning signs for more serious CVAs © 2015 Pearson Education, Inc. Alzheimer’s Disease  Progressive degenerative brain disease  Mostly seen in the elderly, but may begin in middle age  Structural changes in the brain include abnormal protein deposits and twisted fibers within neurons  Victims experience memory loss, irritability, confusion, and ultimately, hallucinations and death © 2015 Pearson Education, Inc. Spinal Cord  Extends from the foramen magnum of the skull to the first or second lumbar vertebra  Provides a two-way conduction pathway to and from the brain  31 pairs of spinal nerves arise from the spinal cord  Ends around vertebra L1 or L2  Cauda equina is a collection of spinal nerves at the inferior end © 2015 Pearson Education, Inc. Figure 7.20 Anatomy of the spinal cord, posterior view. Cervical enlargement Cervical spinal nerves C8 Dura and arachnoid mater Lumbar enlargement Thoracic spinal nerves T12 End of spinal cord Lumbar spinal nerves Cauda equina End of meningeal coverings © 2015 Pearson Education, Inc. L5 S1 S5 Sacral spinal nerves Spinal Cord Anatomy  Internal gray matter is mostly cell bodies  Dorsal (posterior) horns house interneurons  Receive information from sensory neurons in the dorsal root  Anterior (ventral) horns house motor neurons of the somatic (voluntary) nervous system  Send information out ventral root  Gray matter surrounds the central canal, which is filled with cerebrospinal fluid © 2015 Pearson Education, Inc. Spinal Cord Anatomy  Exterior white mater—conduction tracts  Dorsal, lateral, ventral columns  Sensory (afferent) tracts conduct impulses toward brain  Motor (efferent) tracts carry impulses from brain to skeletal muscles © 2015 Pearson Education, Inc. Figure 7.21 Spinal cord with meninges (three-dimensional view). Dorsal root ganglion White matter Central canal Dorsal (posterior) horn of gray matter Lateral horn of gray matter Spinal nerve Dorsal root of spinal nerve Ventral root of spinal nerve Ventral (anterior) horn of gray matter Pia mater Arachnoid mater Dura mater © 2015 Pearson Education, Inc. Figure 7.22 Schematic of ascending (sensory) and descending (motor) pathways between the brain and the spinal cord. Interneuron carrying sensory information to cerebral cortex Cerebral cortex (gray matter) White matter Integration (processing and interpretation of sensory input) occurs Interneuron carrying response to motor neurons Cerebrum Thalamus Interneuron carrying response to motor neuron Cell body of sensory neuron in sensory ganglion Nerve Skin Sensory receptors Brain stem Interneuron carrying sensory information to cerebral cortex Cervical spinal cord Muscle White matter Gray matter Motor output Interneuron Motor neuron cell body © 2015 Pearson Education, Inc. Spinal Cord Anatomy  Meninges cover the spinal cord  Spinal nerves leave at the level of each vertebra  Dorsal root  Associated with the dorsal root ganglia—collections of cell bodies outside the central nervous system  Ventral root  Contains axons © 2015 Pearson Education, Inc. Peripheral Nervous System (PNS)  PNS consists of nerves and ganglia outside the central nervous system  Nerve  bundle of neuron fibers  Neuron fibers are bundled by connective tissue © 2015 Pearson Education, Inc. PNS: Structure of a Nerve  Endoneurium surrounds each fiber  Groups of fibers are bound into fascicles by perineurium  Fascicles are bound together by epineurium © 2015 Pearson Education, Inc. Figure 7.23 Structure of a nerve. Axon Myelin sheath Endoneurium Perineurium Epineurium Fascicle Blood vessels © 2015 Pearson Education, Inc. PNS: Classification of Nerves  Mixed nerves  Both sensory and motor fibers  Sensory (afferent) nerves  Carry impulses toward the CNS  Motor (efferent) nerves  Carry impulses away from the CNS © 2015 Pearson Education, Inc. PNS: Cranial Nerves  12 pairs of nerves that mostly serve the head and neck  Only the pair of vagus nerves extends to thoracic and abdominal cavities  Most are mixed nerves, but three are sensory only: 1. Optic 2. Olfactory 3. Vestibulocochlear © 2015 Pearson Education, Inc. PNS: Cranial Nerves Mnemonic Device  Oh – Olfactory  Oh – Optic  Oh – Oculomotor  To – Trochlear  Touch – Trigeminal  And – Abducens  Feel – Facial  Very – Vestibulocochlear  Green – Glossopharyngeal  Vegetables – Vagus  A – Accessory  H – Hypoglossal © 2015 Pearson Education, Inc. Table 7.2 The Cranial Nerves (1 of 6) © 2015 Pearson Education, Inc. Table 7.2 The Cranial Nerves (2 of 6) © 2015 Pearson Education, Inc. Table 7.2 The Cranial Nerves (3 of 6) © 2015 Pearson Education, Inc. Table 7.2 The Cranial Nerves (4 of 6) © 2015 Pearson Education, Inc. Table 7.2 The Cranial Nerves (5 of 6) © 2015 Pearson Education, Inc. Table 7.2 The Cranial Nerves (6 of 6) Cervical nerves © 2015 Pearson Education, Inc. Figure 7.24 Distribution of cranial nerves. III Oculomotor IV Trochlear VI Abducens I Olfactory V Trigeminal V Trigeminal II Optic VII Facial Vestibular branch Cochlear branch VIII Vestibulocochlear X Vagus IX Glossopharyngeal XII Hypoglossal © 2015 Pearson Education, Inc. XI Accessory PNS: Spinal Nerves  There is a pair of spinal nerves at the level of each vertebra, for a total of 31 pairs  Formed by the combination of the ventral and dorsal roots of the spinal cord  Named for the region from which they arise © 2015 Pearson Education, Inc. Figure 7.25a Spinal nerves. C1 Cervical nerves 2 3 4 5 6 7 8 T1 2 Ventral rami form cervical plexus (C1 – C5) Ventral rami form brachial plexus (C5 – C8; T1) 3 4 Thoracic nerves 5 6 7 8 9 10 Lumbar nerves Sacral nerves 11 No plexus formed (intercostal nerves) (T1 – T12) 12 L1 2 3 4 Ventral rami form lumbar plexus (L1 – L4) 5 S1 2 (a) © 2015 Pearson Education, Inc. 3 4 Ventral rami form sacral plexus (L4 – L5; S1 – S4) PNS: Anatomy of Spinal Nerves  Spinal nerves divide soon after leaving the spinal cord  Ramus—branch of a spinal nerve; contains both motor and sensory fibers  Dorsal rami—serve the skin and muscles of the posterior trunk  Ventral rami—form a complex of networks (plexus) for the anterior © 2015 Pearson Education, Inc. Figure 7.25b Spinal nerves. Dorsal root Dorsal root ganglion Spinal cord Ventral root Spinal nerve (b) © 2015 Pearson Education, Inc. Dorsal ramus Ventral ramus PNS: Spinal Nerve Plexuses  Plexus–networks of nerves serving motor and sensory needs of the limbs  Form from ventral rami of spinal nerves in the cervical, lumbar, and sacral regions  Four plexuses: 1. 2. 3. 4. Cervical Brachial Lumbar Sacral © 2015 Pearson Education, Inc. Table 7.3 Spinal Nerves Plexuses (1 of 3) © 2015 Pearson Education, Inc. Figure 7.26a Distribution of the major peripheral nerves of the upper and lower limbs. Axillary nerve Humerus Radial nerve Musculocutaneous nerve Ulna Radius Ulnar nerve Radial nerve (superficial branch) Median nerve (a) The major nerves of the upper limb © 2015 Pearson Education, Inc. Table 7.3 Spinal Nerves Plexuses (2 of 3) © 2015 Pearson Education, Inc. Figure 7.26b Distribution of the major peripheral nerves of the upper and lower limbs. Femoral Lateral femoral cutaneous Obturator Anterior femoral cutaneous Saphenous (b) Lumbar plexus, anterior view © 2015 Pearson Education, Inc. Table 7.3 Spinal Nerves Plexuses (3 of 3) © 2015 Pearson Education, Inc. Figure 7.26c Distribution of the major peripheral nerves of the upper and lower limbs. Superior gluteal Inferior gluteal Sciatic Posterior femoral cutaneous Common fibular Tibial Sural (cut) Deep fibular Superficial fibular Plantar branches (c) Sacral plexus, posterior view © 2015 Pearson Education, Inc. PNS: Autonomic Nervous System  Motor subdivision of the PNS  Consists only of motor nerves  Also known as the involuntary nervous system  Regulates activities of cardiac and smooth muscles and glands  Two subdivisions: 1. Sympathetic division 2. Parasympathetic division © 2015 Pearson Education, Inc. PNS: Differences Between Somatic and Autonomic Nervous Systems Somatic Nervous System Autonomic Nervous System Nerves One-neuron system; it originates in the CNS, and axons extend to the skeletal muscles served Two-neuron system consisting of preganglionic and postganglionic neurons Effector organ Skeletal muscle Smooth muscle, cardiac muscle, glands Subdivisions None Sympathetic and parasympathetic Neurotransmitter Acetylcholine Acetylcholine, epinephrine, norepinephrine © 2015 Pearson Education, Inc. Figure 7.27 Comparison of the somatic and autonomic nervous systems. Central nervous system Peripheral nervous system Effector organs Acetylcholine Somatic nervous system Skeletal muscle Acetylcholine Autonomic nervous system Sympathetic division Smooth muscle (e.g., in stomach) Norepinephrine Ganglion Epinephrine and Acetylcholine norepinephrine Blood vessel Parasympathetic division KEY: Preganglionic axons (sympathetic) © 2015 Pearson Education, Inc. Postganglionic axons (sympathetic) Glands Acetylcholine Cardiac muscle Ganglion Myelination Preganglionic axons (parasympathetic) Postganglionic axons (parasympathetic) PNS: Anatomy of the Parasympathetic Division  Preganglionic neurons originate from the craniosacral regions:  The cranial nerves III, VII, IX, and X  S2 through S4 regions of the spinal cord  Because it is the site of preganglionic neuron origination, the parasympathetic division is also known as the craniosacral division  Terminal ganglia are at the effector organs  Neurotransmitter: acetylcholine © 2015 Pearson Education, Inc. Figure 7.28 Anatomy of the autonomic nervous system. Parasympathetic Sympathetic Eye Brain stem Salivary glands Heart Eye Skin Cranial Cervical Sympathetic ganglia Salivary glands Lungs Lungs T1 Heart Stomach Stomach Thoracic Pancreas Liver and gallbladder Pancreas L1 Liver and gallbladder Adrenal gland Lumbar Bladder Genitals © 2015 Pearson Education, Inc. Bladder Sacral nerves (S2–S4) Genitals PNS: Anatomy of the Sympathetic Division  Preganglionic neurons originate from T1 through L2  Ganglia are at the sympathetic trunk (near the spinal cord)  Short preganglionic neuron and long postganglionic neuron transmit impulse from CNS to the effector  Neurotransmitters: norepinephrine and epinephrine (effector organs) © 2015 Pearson Education, Inc. Figure 7.28 Anatomy of the autonomic nervous system. Parasympathetic Sympathetic Eye Brain stem Salivary glands Heart Eye Skin Cranial Cervical Sympathetic ganglia Salivary glands Lungs Lungs T1 Heart Stomach Stomach Thoracic Pancreas Liver and gallbladder Pancreas L1 Liver and gallbladder Adrenal gland Lumbar Bladder Genitals © 2015 Pearson Education, Inc. Bladder Sacral nerves (S2–S4) Genitals Figure 7.29 Sympathetic pathways. Lateral horn of gray matter Dorsal ramus of spinal nerve Dorsal root Sympathetic trunk Spinal nerve (a) (b) (c) Ventral root Sympathetic trunk ganglion Splanchnic nerve Ventral ramus of spinal nerve To effector: blood vessels, arrector pili muscles, and sweat glands of the skin Gray ramus communicans White ramus communicans Collateral ganglion (such as the celiac) Visceral effector organ (such as small intestine) © 2015 Pearson Education, Inc. PNS: Autonomic Functioning  Sympathetic—“fight or flight” division  Response to unusual stimulus  Takes over to increase activities  Remember as the “E” division:  Exercise  Excitement  Emergency  Embarrassment © 2015 Pearson Education, Inc. PNS: Autonomic Functioning  Parasympathetic—“housekeeping” activites  Conserves energy  Maintains daily necessary body functions  Remember as the “D” division  Digestion  Defecation  Diuresis © 2015 Pearson Education, Inc. Table 7.4 Effects of the Sympathetic Divisions of the Autonomic Nervous System (1 of 2) © 2015 Pearson Education, Inc. Table 7.4 Effects of the Sympathetic Divisions of the Autonomic Nervous System (2 of 2) © 2015 Pearson Education, Inc. Developmental Aspects of the Nervous System  The nervous system is formed during the first month of embryonic development  Any maternal infection can have extremely harmful effects  Oxygen deprivation destroys brain cells  The hypothalamus is one of the last areas of the brain to develop © 2015 Pearson Education, Inc. Developmental Aspects of the Nervous System  Severe congenital brain diseases include:  Cerebral palsy  Anencephaly  Hydrocephalus  Spina bifida © 2015 Pearson Education, Inc. Developmental Aspects of the Nervous System  Premature babies have trouble regulating body temperature because the hypothalamus is one of the last brain areas to mature prenatally.  Development of motor control indicates the progressive myelination and maturation of a child’s nervous system. © 2015 Pearson Education, Inc. Developmental Aspects of the Nervous System  Brain growth ends in young adulthood. Neurons die throughout life and are not replaced; thus, brain mass declines with age.  Healthy aged people maintain nearly optimal intellectual function.  Disease—particularly cardiovascular disease—is the major cause of declining mental function with age. © 2015 Pearson Education, Inc.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            