Download Industriel katalys

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Cracking (chemistry) wikipedia , lookup

Asymmetric hydrogenation wikipedia , lookup

Haloalkane wikipedia , lookup

Fischer–Tropsch process wikipedia , lookup

Woodward–Hoffmann rules wikipedia , lookup

Alkene wikipedia , lookup

Marcus theory wikipedia , lookup

George S. Hammond wikipedia , lookup

Hofmann–Löffler reaction wikipedia , lookup

Baylis–Hillman reaction wikipedia , lookup

Asymmetric induction wikipedia , lookup

Elias James Corey wikipedia , lookup

Petasis reaction wikipedia , lookup

Hydroformylation wikipedia , lookup

Stille reaction wikipedia , lookup

Ring-closing metathesis wikipedia , lookup

Diels–Alder reaction wikipedia , lookup

Discodermolide wikipedia , lookup

Ene reaction wikipedia , lookup

Enantioselective synthesis wikipedia , lookup

Physical organic chemistry wikipedia , lookup

Strychnine total synthesis wikipedia , lookup

Transcript
Homogeneous Catalysis in Industry
Tantárgyfelelős: Dr. Joó Ferenc
A tárgy oktatója: Dr. Bogár Krisztián (University of Bergen, Norvégia; meghívott előadó)
Óraszám/hét:
2
Kreditszám:
2
Számonkérés módja: kollokvium
Előfeltétel: felvétel a PhD képzésbe
Tematika:
I. Introduction
Industry as a profit-oriented organization, Law, Intellectual Property, Patent
Research and development (R&D)
Production and waste-handling
Resource, Outsource
Green chemistry – Why and how?
Catalysis: definition, classification with examples, selectivity issues
a) Homogeneous and heterogeneous catalysis
b) Gas phase-, liquid phase-, biphasic catalysis, phase-transfer catalysis
c) Metal catalysis, biocatalysis, organocatalysis
Safety issues: risk and safety analysis, oxygen balance
II. Process chemistry: Scale-up of laboratory syntheses for industrial processes
Choice of starting materials and reagents
Solvent choice
Synthetic route choice for scale-up
Running the reaction (tank reactor, flow chemistry, microwave reactor)
Monitoring the reaction
Quenching and work-up
Purification
Methods for removal of residual metal, scavengers
Characterization
Packaging, storage, shipping, delivery
Recycling, reusing, dumping
III. Frequently used processes in industry
a) Reduction
Olefin hydrogenation reactions
Imine hydrogenation reactions
Carbonyl hydrogenation reactions
1
Selective hydrogenation reactions
Reduction of nitroarenes to aniline derivatives
b) Oxidation
Alcohol oxidation reactions
Oxidation of heteroatoms: Sulfoxidation (Kagan oxidation)
Baeyer-Villiger reaction
c) Friedel-Crafts reaction
Alkylation and acylation reactions
Diarylketones via other methods
d) Carbonylation, Cyanation and Sandmeyer reaction
e) Olefin chemistry
Olefination reactions
Wacker oxidation
Oxidative olefin bond cleavage
Acetoxylation and diacetoxylation of olefins
Epoxidation, aziridination, cyclopropanation reactions
Dihydroxylation
Metathesis reactions
Allylic substitution and conjugate addition reactions
Alternative synthetic routes to profens
Hydroamination
Hydroacylation
f) Alcohols for C-C, C-N and C-X bond formations
Isomerization reactions
The “borrowing hydrogen” strategy
g) Reductive amination
h) Cross-coupling reactions
Wurtz reaction
Glaser coupling
Ullmann reaction
Gomberg-Bachmann reaction
Cadiot-Chodkiewicz coupling
Castro-Stephens coupling
Gilman reagent coupling
Cassar reaction
Kumada-Corriu reaction
Heck reaction and double Heck reaction
Sonogashira reaction
Negishi reaction and ZACA
Stille reaction
Suzuki-Miyaura reaction
Hiyama coupling
Buchwald-Hartwig amination
2
Etherification
Fukuyama reaction
Liebeskind-Strogl reaction
Decarboxylative cross-coupling reactions
Chan-Lam coupling reaction
Choice of catalyst precursor, ligand, base and solvent, cesium-effect
i) C-H actication, direct arylation, trifluoromethylation
-Arylation of ketones
Allylic C-H activation
Fluorination and trifluoromethylation reactions
Direct arylation of activated and unactivated arenes
j) Biocatalysis
Enzyme classification, enzyme catalysis, enzyme kinetics
Whole cell catalysis
Industrial catalysis using free enzymes
Immobilized enzyme catalysis in industrial syntheses
k) Combined metal and enzyme catalysis
Dynamic kinetic resolution (DKR): Large-scale application
Dynamic kinetic asymmetric transformation (DYKAT)
Literature:
Mathias Christmann, Stefan Bräse (Eds.), Asymmetric Synthesis – The Essentials, Wiley,
2008.
Robert E. Gawley; Jeffrey Aubé, Principle of Asymmetric Synthesis; Pergamon, 1996.
Robert B. Grossmann, The Art of Writing Reasonable Organic Reaction Mechanisms;
Springer, 2003.
Matthias Beller; Albert Renken; Rutger A. van Santen (Eds.), Catalysis – From Principles to
Applications; Wiley, 2012.
Matthias Beller, Carsten Bolm (Eds.), Transition Metals for Organic Synthesis, Wiley,
2008.
John F. Hartwig, Organotransition Metal Chemistry – From Bonding to Catalysis;
University Science Books, Mill Valley, California, USA, 2010.
Francois Diederich; Peter J. Stang (Eds.), Metal-catalyzed Cross-coupling Reactions;
Wiley, 1998.
Norbert Krause (Ed.), Modern Organocopper Chemistry, Wiley, 2002.
Alfredo Ricci (Ed.), Modern Amination Methods; Wiley 2000.
3
Christian Bruneau; Pierre H. Dixneuf (Eds.), Ruthenium Catalysts and Fine Chemistry,
Topics in Organometallic Chemistry, Vol. 11.; Springer, 2004.
Jan-Erling Bäckvall (Ed.), Modern Oxidation Methods; Wiley, 2010.
Jason P. Tierney; Pelle Lindström, Microwave Assisted Organic Synthesis; Blackwell
Publishing Ltd., 2005.
Antonio de la Hoz; André Loupy (Eds.), Microwaves in Organic Synthesis; Wiley, 2012.
Neal G. Anderson, Practical Process Research & Development – A Guide for Organic
Chemists; Academic Press, 2012.
Nobuyoshi Yosuda, The Art of Process Chemistry; Wiley, 2011.
Peter J. Harrington, Pharmaceutical Process Chemistry for Synthesis – Rethinking the
Routes to Scale-Up; Wiley, 2011.
Hans-Ulrich Blaser; Jans-Jürgen Federsel, Asymmetric Catalysis on Industrial Scale –
Challenges, Approaches and Solutions; Wiley, 2010.
Kurt Faber, Biotransformations in Organic Chemistry; Springer, 2004.
Karlheinz Drauz, Herbert Waldmann (Eds.), Enzyme Catalysis in Organic Synthesis,
Wiley, 1995.
Uwe T. Bornscheuer, Romas J. Kazlauskas, Hydrolases in Organic Synthesis – Regio- and
Stereoselective Biotransformations, Wiley, 1999.
Vincente Gotor, Ignacio Alfonso, Eduardo García-Urdiales (Eds.), Asymmetric Organic
Synthesis with Enzymes, Wiley, 2008.
Giacomo Carrea, Sergio Riva (Eds.), Organic Synthesis with Enzymes in Non-Aqueous
Media, Wiley, 2008.
Rolf D. Schmid, Vlada B. Urlacher (Eds.), Modern Biooxidation – Enzymes, Reactions and
Applications, Wiley, 2007.
Richard B. Silverman, The Organic Chemistry of Enzyme-Catalyzed Reactions, Academic
Press, 2002.
Daniela Gamenara; Gustavo A. Seoane; Patricia Saenz-Méndez; Pablo Domínguez de María,
Redox Biocatalysis – Fundamentals ans Applications; Wiley, 2013.
Roger A. Sheldon, Chirotechnology – Industrial Synthesis of Optically Active
Compounds; Marcel Dekker Inc., 1993.
Ramesh N. Patel (Ed.), Biocatalysis in the Pharmaceutical and Biotechnological
Industries; CRC Press, 2007.
4