Download Immunology 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Duffy antigen system wikipedia , lookup

Rheumatic fever wikipedia , lookup

Lymphopoiesis wikipedia , lookup

Thymus wikipedia , lookup

T cell wikipedia , lookup

Anti-nuclear antibody wikipedia , lookup

Immunocontraception wikipedia , lookup

Complement system wikipedia , lookup

Inflammation wikipedia , lookup

ELISA wikipedia , lookup

Phagocyte wikipedia , lookup

DNA vaccination wikipedia , lookup

Rheumatoid arthritis wikipedia , lookup

Antibody wikipedia , lookup

Allergy wikipedia , lookup

Immune system wikipedia , lookup

Adoptive cell transfer wikipedia , lookup

Adaptive immune system wikipedia , lookup

Autoimmunity wikipedia , lookup

Hygiene hypothesis wikipedia , lookup

Sjögren syndrome wikipedia , lookup

Innate immune system wikipedia , lookup

Monoclonal antibody wikipedia , lookup

Immunomics wikipedia , lookup

Psychoneuroimmunology wikipedia , lookup

Molecular mimicry wikipedia , lookup

Cancer immunotherapy wikipedia , lookup

Immunosuppressive drug wikipedia , lookup

Polyclonal B cell response wikipedia , lookup

Transcript
Immunology
MCD Year 2
Anil Chopra
Contents
Immunology 1 - Allergic Disease ................................................................................ 1
Immunology 2 – Hypersensitivity ............................................................................... 6
Immunology 2 – Hypersensitivity ............................................................................. 11
Immunology 4 - Tolerance and Autoimmunity ....................................................... 16
Immunology 5 - Immunology of Reproduction ....................................................... 21
Immunology 1 - Allergic Disease
Anil Chopra
1. Outline the factors underlying the development of atopic/allergic diseases
2. Describe the important clinical features of asthma, hay fever, allergic eczema and
anaphylaxis
3. Briefly describe the approach to investigation and management of patients with
these disorders.
Atopy: the immune response to a harmless antigen (allergen).
Allergy: the expression of a disease caused by atopy.
Common allergens include:
- mites
- pollen
- fur
- penicillin
- nuts
Prevalence of atopy is 50% of young adults in the UK. They do however vary in
severity from mild occasional symptoms to chronic severe asthmatic attacks. The
causes can be from the environmental causes:
- Age - increases in children, peaks in teens, reduces in adulthood
- Gender - asthma commoner in males in childhood, females in adults
- Family size - commoner in small families
- Infections- early life infections protect
- Animals - early exposure protects
- Diet - anti-oxidants, fatty acids protect
…or from genetic causes:
- 80% atopics have a family history.
- It is shown to be polygenic – over 40 genes contribute to atopy.
- IL-4 gene cluster (chromosome 5) linked to raised IgE
- genes on
chromosome 11q
(IgE receptor)
linked to atopy and
asthma
There are 4 types of
hypersensitivity
reaction:
There are a number of different types of inflammation in allergy:
» Anaphylaxis & some urticarias (skin rashes) - type I hypersensitivity (IgE
mediated)
» Chronic urticaria & some drug allergies- type II hypersensitivity (IgG mediated)
» Asthma, rhinitis (inflammation of internal areas of the nose), eczema: mixed
inflammation
o type I hypersensitivity (IgE mediated)
o type IV hypersensitivity (chronic inflammation)
Allergic Reactions take place in 2 main steps:
Sensitisation: initial exposure to the allergen. This normally occurs early in life and
produces a primary immune response to the antigen.
Reaction: second exposure to the antigen any time after sensitisation. This produces a
secondary response induced by memory cells.
Eosinophils: make up only 2-5% of the leukocytes, are produced in the bone marrow
and they reside in tissues. They have a multi-lobed nucleus and large granules of toxic
proteins which they use against antigens/allergens as they are recruited in immune
responses. They can also cause tissue damage.
Mast Cells: mast cells are resident in tissues, and contain large granules with
histamine and toxic proteins. They contain IgE on their surface which, becomes crosslinked when the come into contact with an antigen and causes the release of histamine
and synthesis of some other inflammatory mediators (cytokines, prostaglandins,
leukotrienes,)
Dermatographic urticaria (also known as, dermatographism) is a skin disorder in
which the skin becomes raised and inflamed when stroked or rubbed with a dull
object due to the action of inflammation mediated by mast cells.
Neutrophils: these play a role in severe and virus induced asthma. They make up 5070% of leukocytes in the blood, contain a multi-lobed nucleus and contain digestive
enzymes and can reslease mediators such as cytokines, leukotrines and oxidant
radicals.
Asthma
Acute Inflammation
» Mast cells become activated and degranulated.
o Release histamine, prostaglandin, leukotrienes.
o This results in the airways narrowing.
Airflow limitation in patients with asthma results from one of four mechanisms
related to the inflammatory process:
» Airway wall oedema occurs when mediators released from inflammatory cells
cause leakage of fluid from the pulmonary capillaries into the tissues surrounding
the airways, resulting in mucosal thickening and swelling of the airway.
» Mucus plug formation occurs in longstanding severe asthma, and results in
persistent airflow limitation due to chronic mucus secretion and the hardening of
mucus plugs in the airways.
» Acute bronchoconstriction occurs when smooth muscle in hyper-responsive
airway walls contracts. It is a basic mechanism involved in asthma exacerbations
and acute episodes of worsening symptoms and/or lung function.
» Airway wall remodeling refers to structural changes in the airway that lead to
irreversible airflow limitation.
Chronic Inflammation
Chronic inflammation of the airways results from:
 Cellular infiltrate
o Th2 lymphocytes, eosinophils
 Smooth muscle hypertrophy
 Mucus plugging
 Epithelial shedding
 Sub epithelial fibrosis
Clinical Features of Allergy
Rhinitis: the irritation and inflammation of areas around the nose. It is most prevalent
in the summer (hayfever) and can also be caused by fur and house dust mites. It is
characterised by runny nose (rhinorrhoea), itchy nose and eyes, nasal blockage and
sneezing.
Asthmatic attack: the main allergens that induce asthmatic attacks are house mites,
pollen and pet fur. Asthmatics can be diagnosed by wheezing, variable peak flow and
abnormal response to treatment. These can be exacerbated by viruses (cold, flu),
irritants, temperature changes, emotion, exercise and certain medicines (β-blockers).
Anaphylaxis: this is a severe asthmatic reaction and is uncommon. It is characterised
by itchiness and swelling around mouth, pharynx, lips, wheeze, chest tightness,
dyspnoea, faintness, diarrhoea & vomiting, collapse and can leave to death if severe
or untreated. It is mediated by degranulation of IgE mast cells and is caused by
exposure to peanuts, penicillin, NSAIDs and insect stings.
Food allergies: there are a number of different allergens in food that can bring about
allergic reactions. The birch/pollen allergy syndrome is characterised by sensitisation
by inhalation of the birch grass/pollen which results in oral hypersensitive reactions to
many foods such as fresh fruit and vegetables which only disappears on cooking.
Eczema: this is characterised by a chronic itchy skin rash that is present until adult
age. It can be complicated by bacterial infection.
Management of Allergies
Diagnosis
 Take careful history
 Skin prick testing
 RAST Radioallergosorbent Test (blood specific IgE):
o on anti-histamines, extensive skin disease, dermatographism, baby,
anaphylaxis, peanut
 Total IgE
 Allergen challenge
 Test Lung function (asthma)
Treatment
 Emergency Treatment
o EpiPen or Anaphylaxis kit - adrenaline, antihistamine, steroid
 Allergic rhinitis
o anti-histamines (sneezing, itching, rhinorrhoea)
o nasal steroids (nasal blockage)
o cromoglycate – a mast cell stabiliser (children, eyes)
 Eczema
o Emollients (moistureiser)
o topical steroid cream
 Venom allergies such as bee or wasp stings
o Immunotherapy – more and more vaccines of the antigen are given to the
patient until they are hyposensitised
o single antigen
o antigen used is purified
 Pollen induced allergies
o Immunotherapy if single allergen responsible for major symptoms
o purified preparation available
o SLIT – sub-lingual immunotherapy.
 Asthma
o Step 1. Use β2 agonist drugs as required by inhalation
 salbutamol
o Step 2. Inhaled steroid low - moderate dose
 beclomethasone/budesonide (50-800mg per day)
 fluticasone (50-400mg per day)
o Step 3. Add further therapy
 Add Long acting β2 agonist, leukotriene antagonist
 High dose inhaled steroids - up to 2mg per day via a spacer
o Step 4. Add courses of Oral Steroids
 prednisolone 30mg daily for 7-14 days
Prevention
 Avoidance of the known allergy
 Always carry a kit or EpiPen
 Inform immediate family & caregivers
 Wear a MedicAlert bracelet
Immunology 2 – Hypersensitivity
Anil Chopra
1. Describe the mechanisms by which IgE, antibodies, immune complexes and Tcells can cause tissue damage and inflammation (the 4 types of hypersensitivity)
2. Give examples of the clinical syndromes associated with each type of
immunemediated inflammation.
Inflammation
Inflammation is the body’s rapid response and involves various different immune
molecules including antibodies, complement, cytokines. e.t.c. as well as other immune
cells moving toward areas of injury or infection. It produces
 Local dilatation
 Increased blood flow
 Increased vascular permeability
o Caused by:- C3a, C5a, Histamine, Leukotrienes, Cytokines IL-1, IL-6, IL8, IL-2, TNF, LT
 Inflammatory mediators & cytokines
o Cell trafficking - Chemotaxis – Chemokines
o 1. Neutrophils
o 2. Macrophages
o 3. Lymphocytes
…which results in
 Heat
 Pain
 Redness
 Swelling
Tissues
Injury
Damage
Microbe
PG, LT
Mast Cells and Inflammation
Antibody
Histamine
Mast Cell
Complement
activation
C3a, C5a
PMN
Chemotaxis
C3b
Phagocytosis
Fluid
Oedema
Polymorphonuclear
Leukocyte
Blood
Vascular
permeability
Types of Hypersensitivity:
Type I : Immediate Hypersensitivity
When the antibody is primarily exposed, IgE antibodies are produced. The IgE
antibodies bind to mast cells and basophils.
When the patient is exposed to the antigen for the 2nd time, then a lot more IgE is
produced and the antigen causes cross-bridges between the IgE molecules on the
surface of mast cells. This results in degranulation and the release of histamine,
tryptase and kininogenase.
These cause all the immediate effects of inflammation such as:
 Increased blood vessel permeability and therefore leakage.
 Bronchial constriction.
 Gut hypermotility.
These also result in the production of new formed mediators such as:
 Leukotrienes
 Prostaglandins
… which cause the effects of late phase inflammation.
Diagnosis
 History
o Timing with respect to exposure
o If unclear - review all exposures preceding 24 hours
 Grade reaction
Mild
Localised angioedema & urticaria
No significant impairment of breathing
No features of hypotension
Moderate
More widespread angioedema & urticaria
Some bronchospam, Mild GI symptoms
Severe
Severe, intense bronchospasm
Laryngeal oedema, severe shortness of breath, cyanosis, respiratory arrest,
hypotension, cardiac arrhythmias, shock, gross GI symptoms
 Skin Prick Test
 immediate wheal and flare
response
 Total serum IgE
 Specific serum IgE – RAST
 Serum/Urine tryptase
 3 samples over 36 hours
Type II: Antibody-dependent Cytotoxicity
 Antibodies IgG or IgM react with cell surface antigens.
 This results in the activation of complement, and in turn cell lysis (death) and
inflammation.
 More cytotoxic cells are attracted (neutrophils, eosinophils, monocytes, NK cells)
Clinical presentation depends on target tissue
 Organ-specific autoimmune diseases
o myasthenia gravis (Acetylcholine R Antibody) (Type 5)
o glomerulonephritis (Anti-GBM Antibody)
o pemphigus vulgaris (Antibody - epithelial cell cement)
 Autoimmune cytopoenias (blood cell destruction)
o haemolytic anaemia
o thrombocytopoenia
o neutropoenia
 Haemolytic disease of the newborn (rhesus antibody)
Diagnosis
Tests for Antibody-Dependent Hypersensitivity
 Test for specific autoantibodies
 Organ and Non-organ specific
 Use Immunofluorescence
o Used to label the antibodies or antigens with a flourescent dye. Tissue
slide + Serum + Fluor detector, microscope.
 For identified antigens
 Enzyme-Linked ImmunoSorbent Assay, or ELISA.
Type III : Immune
Complex Mediated
This is a very serious form of
hypersensitivity formed from
the formation of antigen –
antibody complexes which
deposit in tissue and the circulation.
Complement is activated and
inflammatory cells are recruited. It can
lead to tissue damage and vasculitis.
If the response is quick, then there is an
antigen excess, if the response is very
late, then there is antibody excess. In
these cases, the immune complexes are
small and are likely to
deposit in small blood
vessels.
If the response is
moderate then there is
more of an equal number
of antigens and antibodies. The complexes bind to the complement more efficiently
and hence are cleared more efficiently.
Type IV : Delayed Cell Mediated
It is called delayed cell mediated hypersensitivity because the effects take 2 – 3 days.
The response is brought about by CD8+ cytotoxic T cells and CD4+ helper T cells.
The CD4+ helper cells recognise and bind to the MHC class II (occasionaly I) on the
surface of cells that are espressing antigen and in respones secrete:
 IL(interlukin)-2: induces release of
o
IFN-γ
o
TNF-α
o
TNF-β (LT-lymphotoxin)
 IFN-γ:
o
Up-regulates MHC Class II
o
Activates macrophages
o
Promotes Antibody class
switching to IgG2a
 TNF-α & TNF β (LT):
o
Activate vascular
endothelium
o
Promote inflammation
o
Activate macrophages
It is tested for by a contact sensitivity
test.
Type V: Stimulatory Hypersensitivity
This is a new proposed type of hypersensitivity and involves antibodies binding to
hormone receptors which results in the gland over-secreting that hormone. E.g.
 Graves Disease: Hyperthyroidism, antibody acts as TSH (thyroid stimulating
hormone).
Immunology 2 – Hypersensitivity
Anil Chopra
3. Describe the mechanisms by which IgE, antibodies, immune complexes and Tcells can cause tissue damage and inflammation (the 4 types of hypersensitivity)
4. Give examples of the clinical syndromes associated with each type of
immunemediated inflammation.
Inflammation
Inflammation is the body’s rapid response and involves various different immune
molecules including antibodies, complement, cytokines. e.t.c. as well as other immune
cells moving toward areas of injury or infection. It produces
 Local dilatation
 Increased blood flow
 Increased vascular permeability
o Caused by:- C3a, C5a, Histamine, Leukotrienes, Cytokines IL-1, IL-6, IL8, IL-2, TNF, LT
 Inflammatory mediators & cytokines
o Cell trafficking - Chemotaxis – Chemokines
o 1. Neutrophils
o 2. Macrophages
o 3. Lymphocytes
…which results in
 Heat
 Pain
 Redness
 Swelling
Tissues
Injury
Damage
Microbe
PG, LT
Mast Cells and Inflammation
Antibody
Histamine
Mast Cell
Complement
activation
C3a, C5a
PMN
Chemotaxis
C3b
Phagocytosis
Fluid
Oedema
Polymorphonuclear
Leukocyte
Blood
Vascular
permeability
Types of Hypersensitivity:
Type I : Immediate Hypersensitivity
When the antibody is primarily exposed, IgE antibodies are produced. The IgE
antibodies bind to mast cells and basophils.
When the patient is exposed to the antigen for the 2nd time, then a lot more IgE is
produced and the antigen causes cross-bridges between the IgE molecules on the
surface of mast cells. This results in degranulation and the release of histamine,
tryptase and kininogenase.
These cause all the immediate effects of inflammation such as:
 Increased blood vessel permeability and therefore leakage.
 Bronchial constriction.
 Gut hypermotility.
These also result in the production of new formed mediators such as:
 Leukotrienes
 Prostaglandins
… which cause the effects of late phase inflammation.
Diagnosis
 History
o Timing with respect to exposure
o If unclear - review all exposures preceding 24 hours
 Grade reaction
Mild
Localised angioedema & urticaria
No significant impairment of breathing
No features of hypotension
Moderate
More widespread angioedema & urticaria
Some bronchospam, Mild GI symptoms
Severe
Severe, intense bronchospasm
Laryngeal oedema, severe shortness of breath, cyanosis, respiratory arrest,
hypotension, cardiac arrhythmias, shock, gross GI symptoms
 Skin Prick Test
 immediate wheal and flare
response
 Total serum IgE
 Specific serum IgE – RAST
 Serum/Urine tryptase
 3 samples over 36 hours
Type II: Antibody-dependent Cytotoxicity
 Antibodies IgG or IgM react with cell surface antigens.
 This results in the activation of complement, and in turn cell lysis (death) and
inflammation.
 More cytotoxic cells are attracted (neutrophils, eosinophils, monocytes, NK cells)
Clinical presentation depends on target tissue
 Organ-specific autoimmune diseases
o myasthenia gravis (Acetylcholine R Antibody) (Type 5)
o glomerulonephritis (Anti-GBM Antibody)
o pemphigus vulgaris (Antibody - epithelial cell cement)
 Autoimmune cytopoenias (blood cell destruction)
o haemolytic anaemia
o thrombocytopoenia
o neutropoenia
 Haemolytic disease of the newborn (rhesus antibody)
Diagnosis
Tests for Antibody-Dependent Hypersensitivity
 Test for specific autoantibodies
 Organ and Non-organ specific
 Use Immunofluorescence
o Used to label the antibodies or antigens with a flourescent dye. Tissue
slide + Serum + Fluor detector, microscope.
 For identified antigens
 Enzyme-Linked ImmunoSorbent Assay, or ELISA.
Type III : Immune
Complex Mediated
This is a very serious form of
hypersensitivity formed from
the formation of antigen –
antibody complexes which
deposit in tissue and the circulation.
Complement is activated and
inflammatory cells are recruited. It can
lead to tissue damage and vasculitis.
If the response is quick, then there is an
antigen excess, if the response is very
late, then there is antibody excess. In
these cases, the immune complexes are
small and are likely to
deposit in small blood
vessels.
If the response is
moderate then there is
more of an equal number
of antigens and antibodies. The complexes bind to the complement more efficiently
and hence are cleared more efficiently.
Type IV : Delayed Cell Mediated
It is called delayed cell mediated hypersensitivity because the effects take 2 – 3 days.
The response is brought about by CD8+ cytotoxic T cells and CD4+ helper T cells.
The CD4+ helper cells recognise and bind to the MHC class II (occasionaly I) on the
surface of cells that are espressing antigen and in respones secrete:
 IL(interlukin)-2: induces release of
o
IFN-γ
o
TNF-α
o
TNF-β (LT-lymphotoxin)
 IFN-γ:
o
Up-regulates MHC Class II
o
Activates macrophages
o
Promotes Antibody class
switching to IgG2a
 TNF-α & TNF β (LT):
o
Activate vascular
endothelium
o
Promote inflammation
o
Activate macrophages
It is tested for by a contact sensitivity
test.
Type V: Stimulatory Hypersensitivity
This is a new proposed type of hypersensitivity and involves antibodies binding to
hormone receptors which results in the gland over-secreting that hormone. E.g.
 Graves Disease: Hyperthyroidism, antibody acts as TSH (thyroid stimulating
hormone).
Immunology 4 - Tolerance and Autoimmunity
Anil Chopra
1. To understand the concept of immunological tolerance
2. To understand the mechanisms underlying immunological tolerance
3. To understand how defects in tolerance lead to autoimmune disease
There are over 70 chronic autoimmune diseases affecting 5-8% of the population
(80% of which are women). The major ones are:
- Rheumatoid Arthritis: 2.1 million cases 30-50,000 children, 2.1 million lost
workdays
- Type I diabetes: 300-500,000 cases, (123,000< 20yrs old)
- Multiple Sclerosis: 250-300,000 cases (25,000 hospitalisations)
- Systemic Lupus Erythematosus (SLE): 240,000 cases
- Inflammatory Bowel Disease (IBD): including Crohn’s disease and ulcerative
colitis)> 800,000 cases
- Autoimmune thyroid disease (ATD): including Hashimoto’s and Grave’s
disease: 3.5 cases/ 1000 women, 0.8 cases per 1000 men.
-
They are caused by the production of antibodies and the induction of an immune
response to auto-antigens:
• Antibody response to cellular or matrix antigen (Type II)
• Immune complex formed by antibody against soluble antigen (Type III)
• T-cell mediated disease (Delayed type hypersensitivity reaction, Type IV)
Immune Response
Antigens are presented to T-cells by MHC (major histocompatibility complex)
antigen presenting cells.
The development of autoimmune disease can be increased by genetics. The different
alleles that code for the production of HLA antigens can increase or decrease the risk
of development of autoimmune diseases.
Syndrome
Autoantigen
Pathology
Insulin dependent diabetes
mellitus
Rheumatoid arthritis
Pancreatic β-cell antigen
β-cell destruction
Unknown synovial joint antigen Joint inflammation and
destruction
Multiple Sclerosis Experimental Myelin Basic Protein
Brain invasion by CD4+ T-cells,
autoimmune encephalitis (EAE) Proteolipid protein
(demyelination), weakness
Myelin Oligodendrocyte
glycoprotein
B-cells, T-cell and NK cells all have a role in autoimmune disease.
Protective Mechanisms
It has been shown that we are tolerant (unable to respond) to self antigens but this
tolerance decreases with age and is specific. The tolerance is:
• Acquired -involves cells of the acquired immune system and is ‘learned’.
• Antigen specific
• Active process in neonates the effects of which are maintained throughout life.
There are a number of mechanisms in tolerance of which any can fail resulting in an
autoimmune disease:
Central Tolerance
T-cells: Because T-cells are produce in the bone marrow but don’t mature until the
get to the thymus, they can only become selective after reaching the thymus. The
thymus presents the antigens on dendritic or thymic epithelial cells which then bind to
immature T-cells forming a pool of immature T-cells.
Only 5% of the mature T-cells in the thymus undergo positive selection and clonal
expansion. These cells will be restricted from self MHC molecules and hence will be
self tolerant.
T- Cell repertoire
before selection
Negative
Selection
Neglect
5%
90%
Apoptosis
Positive
Selection
Apoptosis
5%
Export to
Periphery
Self MHC restricted, Self Tolerant,
T-cell repertoire with ability to
respond to pathogens
Those T-cells which have a high affinity for self antigen MHC-complexes are
destroyed by apoptosis. Selection depends on the affinity of peptide antigen MHC
complex: TCR interaction and mount of peptide-MHC complex.
B-cells: tolerance occurs in the bone marrow by the deletion of immature B-cells
when cross-linking of the immunoglobulins on the surface of the cells.
If central tolerance fails, then a condition called APECED results:
Autoimmune
PolyendocrinopathyCandidiasisEctodermal
Dystrophy
(auto-immune polyglandular syndrome type 1)
It is a rare autoimmune disease that affects all endocrine glands (thyroid, kidneys,
pancreas-diabetes, gonadal failure, pernicious anaemia). It is caused by mutation of
the AIRE gene which is responsible for presenting antigens to T-cells in the thymus.
Most autoimmune diseases affect multi-organ
systems: e.g. SLE (systemic lupus
erythematosis). In SLE autoantibodies are
generated against a range of broad spectrum
antigens. Immune complexes activate forming
deposits and causing
tissue damage in a wide range of tissues.
Peripheral Tolerance
Many antigens are not expressed until the immune system has matured so in order to
prevent immune responses, 4 mechanisms are in place:
Anergy: in order for naive T-cells to produce an
immune response, they need to be co-stimulated,
however most cells in the body do not have the
ability to do this.
B Cells’ anergy is induced by high concentrations
of soluble antigen resulting in down-regulation of
surface immunoglobulins.
Split Tolerance: this results from the fact that in
order to induce an immune response, B-cells need
to be activated by T-cells. B-cells often persist in
an inactive state.
Ignorance: this occurs when antigenic concentration is too low in the periphery or
when there is no antigen presentation (no MHC II). There are also some
immunologically privileged sites where immune cells cannot normally penetrate: for
example in the eye, central and peripheral nervous system and testes. In this case cells
have never been tolerised against the autoantigens.
- following surgery or infection sympathetic Uveitis can develop. This leads to an
immune cells filtering into one eye, and hence an immure response attacking the
other eye.
Suppression: Autoreactive T-cells may be present but do not respond to auto-antigen
because of other cell types resulting in negative signalling.
Failure in peripheral tolerance can result in IPEX (Immune dysregulation,
Polyendocrinopathy, Enteropathy and X-linked inheritance syndrome) - a fatal
recessive disorder presenting early in childhood. It is caused by a mutation in the
FOXP3 gene which encodes a transcription factor ‘scurfy’, critical for the
development of regulatory T-cells. Symptoms include:
• early onset insulin dependent diabetes mellitus
• severe enteropathy
• eczema
• variable autoimmune phenomena
• severe infections
Immunology 5 - Immunology of Reproduction
Anil Chopra
1. Outline current theories of why the foetus is not rejected by the mother.
There are a number of different hypotheses as to why implanted foetuses are not
rejected by a mother.
Medawar’s Hypothesis
Medawar thought that it may be explained by one of
(or more than one of 3 things:
 Anatomical separation of the mother and the foetus
 This was however proved wrong because there
are 2 points of contact between the mother and
the foetus.
 Extravillous cytotrophoblast – this is
important in early pregnancy in the process
of implantation and placentation. Here, a
number of different immune cells from the
mother come into contact with foetal cells.
 Synctiotrophoblast – the interface
between the maternal blood and the
synctiotrophoblast. This is important in the 2nd half of pregnancy.
 Antigenic immaturity of the foetus
 Neither synctiotrophoblast cells nor extravillous cytotrophoblast express MHC
Class II Antigens
 They do however contain some MHC class I antigens
 The monomorphic class I antigens should not should not provoke an immune
response by the mother.
 In the decidua, there is interaction between the HLA-C, HLA-E and HLA-G
antigens and NK cells (not T-cells). This results in the facilitation of invasion
of the trophoblast.
 The decidual NK cells produce a number of factors which facilitate
trophoblast invasion including cytokines (IFN, IL-10, TGF-1, TIMP-1)
chemokines (IL-8, IP-10) and angiogenic factors (VEGF, PLGF).
 It has been shown the level of HLA-G secreted by the trophoblast cells
correlates with implantation success.
 Abnormal expression of HLA-G antigens can lead to complications in
pregnancy – pre-eclampsia (hypertension in pregnancy due to increased
proteins in the blood).
 There are 2 types of HLA-C antigen that are expressed by the trophoblast
cells which bind to the KIR (Killer Ig-like Receptor) on the NK cells. It
they express HLA-C1 then the NK cells are activated (esp. if the NK cell
express KIR-B) and if they
express HLA-C2 then NK
cells are not activated (esp. if
the NK cells express KIR-A).
 Maternal immunological inertness
 Foetal leukocytes travel into the maternal blood.
 Whilst the mother can make antibodies to the foetal leukocytes and an immune
response occurs, it appears to have no effect on the baby.
 Maternal IgG antibodies are transported across the placenta into foetal blood
however the antibodies that were produced against the foetal leukocytes
cannot get into the foetal blood because of complement regulatory proteins on
trophoblast cells e.g DAF CD46.
 Rhesus D antibodies can cross the placenta!
 It has been shown that antibody mediated response to foetal HLA is normal
but cell mediated responses are depressed.
Evidence for this includes:
 Temporary remission of Rheumatoid Arthritis (Th1 mediated) during
pregnancy
 Diseases caused by intracellular pathogens (e.g. Herpes and Malaria) are
exacerbated by pregnancy
 Systemic Lupus Erythematosis (SLE) (Th2 mediated) gets worse during
pregnancy
 In abnormal pregnancy, Th1 mediated immunity is not suppressed.
• Anatomical separation of the mother and the fetus
No
• Antigenic immaturity of the fetus
HLA-G/HLA-E/HLA-C
• Maternal immunological inertness
(Th1/Th2 shift – decreased cell mediated immunity but normal antibody production