* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Unit Topic: Chemistry of Life
Monoclonal antibody wikipedia , lookup
Signal transduction wikipedia , lookup
Gene expression wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Point mutation wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Protein–protein interaction wikipedia , lookup
Western blot wikipedia , lookup
Two-hybrid screening wikipedia , lookup
Deoxyribozyme wikipedia , lookup
Basal metabolic rate wikipedia , lookup
Genetic code wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Fatty acid synthesis wikipedia , lookup
Metalloprotein wikipedia , lookup
Protein structure prediction wikipedia , lookup
Amino acid synthesis wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Proteolysis wikipedia , lookup
Unit Topic: Chemistry of Life Broad Concept: All life is built out of four essential molecules: proteins, carbohydrates, lipids, and nucleic acids. Carbon compounds: 1. Organic means made from carbon - CHONPS (carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur) 2. Protein, lipids, carbohydrates, and nucleic acids 3. Draw how monomers bond together through dehydration synthesis reaction to form polymer 4. Draw how polymers break down to form monomers through hydrolysis reaction 5. protein, carbohydrate, lipid, nucleic acid are the Big 4 - organic molecules because they are all carbon based Carbohydrates: 1. carbohydrates are the main energy source for plants and animals 2. Monosacharrides are the monomers of complex carbohydrates - glucose is most common monomer or monosaccharide 3. disaccharide is two monosaccharides chemically combined through dehydration synthesis reaction (they lose water and bond at oxygen) - sucrose is glucose bonded with fructose and it’s common name is table sugar 4. Identify the structure of the simple sugar glucose and use this structure to build any of the three major complex carbohydrates: glycogen, starch, and cellulose 5. List the function of the three major polysaccharides and describe whether they are found in plants or animals - Cellulose: found in plants and provides support in cell walls - Starch: found in plants and plants use starch to store energy - Glycogen: found in animals and is used to store energy Lipids: 1. List the various roles lipids have in the human body - secondary energy source, insulate the body, build cell membranes, protective coating (wax), and steroids/hormones in the body 2. Label the fatty acids and glycerol on a triglyceride and a phospholipids Triglyceride phospholipid 3. Know the difference in structure of saturated fats and unsaturated fats and the impact it has on their chemical properties - unsaturated fats have double bonds (fewer bonds to hydrogen atoms) and tend to be liquids at room temp - saturated fats have no double bonds and tend to be solid at room temperature 4. Describe how the difference in structure between a triglyceride and a phospholipids leads to a difference in function - phospholipids are glycerol and 2 fatty acids - they have a hydrophilic head and hydrophobic tail so a cell membrane that has a bilayer of phospholipids forms a barrier between inside and outside of cell - triglycerides are glycerol and 3 fatty acids and can be saturated (animal fats and shortening) or unsaturated (seeds and plants oils) 5. Know that steroids include male hormones and cholesterol and waxes are types of lipids - male hormones like testosterone - cholesterol is used by cells to make hormones and help in digestion - waxes for protective coating, candles, lipstick Nucleic Acids: 1. Know that DNA and RNA are the two types of nucleic acids 2. Explain the function of nucleic acids in human body - carry genetic information - tell cell what proteins to make 3. Label the three different parts to a nucleotide: phosphate, sugar, and base 4. Describe the function of DNA and contrast this to the function of RNA - DNA carries the genetic code and is essential for all cell activities - RNA stores and transfers info needed to make proteins Proteins: 1. List and describe the various roles proteins play in the human body - builds strong muscles - hemoglobin transports oxygen in the blood antibodies help fight disease in your immune system keratin strengthens structure of hair, skin, nails collagen strengthens bone and connective tissue enzymes speed up many reactions in the body 2. Label the different parts to an amino acid, including the R group 3. Identify that there are 20 different amino acids and the arrangement of the 20 impacts the shape of the protein made and impacts the function of the protein - 20 different amino acids that have different R groups - different combinations of amino acids gives protein unique shapes - shape of protein determines how it functions 4. Draw and describe how an enzyme works on a substrate using the Lock and Key hypothesis - enzyme attaches to substrate bonds in substrate weaken products made enzyme releases product 5. Explain trends in graphs showing relationship between temperature and enzymes and pH and enzymes - enzymes work best at a certain temperature and pH - if temperature is too high or too low then enzyme no longer works - if pH is too high or too low then enzyme no longer works