* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Molecular Evolution - Miami Beach Senior High School
Molecular cloning wikipedia , lookup
Frameshift mutation wikipedia , lookup
Non-coding DNA wikipedia , lookup
Ridge (biology) wikipedia , lookup
Genomic imprinting wikipedia , lookup
Gene desert wikipedia , lookup
Minimal genome wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Population genetics wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Adaptive evolution in the human genome wikipedia , lookup
Oncogenomics wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Gene expression programming wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
History of genetic engineering wikipedia , lookup
Genome (book) wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Gene expression profiling wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Koinophilia wikipedia , lookup
Helitron (biology) wikipedia , lookup
Genome evolution wikipedia , lookup
Point mutation wikipedia , lookup
Designer baby wikipedia , lookup
Lesson Overview 17.4 Molecular Evolution Lesson Overview Molecular Evolution THINK ABOUT IT The analysis of genomes enables us to study evolution at the molecular level. DNA evidence may indicate how two species are related to one another, even if their body structures don’t offer enough clues. Lesson Overview Molecular Evolution Gene Duplication Where do new genes come from? Lesson Overview Molecular Evolution Gene Duplication Where do new genes come from? One way in which new genes evolve is through the duplication, and then modification, of existing genes. Lesson Overview Molecular Evolution Copying Genes Homologous chromosomes exchange DNA during meiosis in a process called crossing-over. Sometimes crossing-over involves an unequal swapping of DNA so that one chromosome in the pair gets extra DNA. That extra DNA can carry part of a gene, a full gene, or a longer length of chromosome. Lesson Overview Molecular Evolution Duplicate Genes Evolve Sometimes copies of a gene undergo mutations that change their function. The original gene is still around, so the new genes can evolve without affecting the original gene function or product. A gene is first duplicated, and then one of the two resulting genes undergoes mutation. Lesson Overview Molecular Evolution Duplicate Genes Evolve as a Result of Mutations Lesson Overview Molecular Evolution Gene Families Multiple copies of a duplicated gene can turn into a group of related genes called a gene family. Members of a gene family typically produce similar, yet slightly different, proteins. Lesson Overview Molecular Evolution Molecular Clocks What are molecular clocks? Lesson Overview Molecular Evolution Molecular Clocks What are molecular clocks? A molecular clock uses mutation rates in DNA to estimate the time that two species have been evolving independently. Lesson Overview Molecular Evolution Neutral Mutations as “Ticks” Researchers use a molecular clock to compare stretches of DNA to mark the passage of evolutionary time. A molecular clock relies on mutations to mark time. Neutral mutations tend to accumulate in the DNA of different species at about the same rate. Lesson Overview Molecular Evolution Neutral Mutations as “Ticks” Comparison of DNA sequences between species can show how many mutations occurred independently in each group. Lesson Overview Molecular Evolution Neutral Mutations as “Ticks” The more differences there are between the DNA sequences of the two species, the more time has elapsed since the two species shared a common ancestor. Lesson Overview Molecular Evolution Calibrating the Clock Because some genes accumulate mutations faster than others, there are many different molecular clocks that “tick” at different rates. These different clocks allow researchers to time different evolutionary events. Researchers check the accuracy of molecular clocks by trying to estimate how often mutations occur. They compare the number of mutations in a particular gene in species whose age has been determined by other methods. Lesson Overview Molecular Evolution Developmental Genes and Body Plans How may Hox genes be involved in evolutionary change? Lesson Overview Molecular Evolution Developmental Genes and Body Plans How may Hox genes be involved in evolutionary change? Small changes in Hox gene activity during embryological development can produce large changes in adult animals. Lesson Overview Molecular Evolution Hox Genes and Evolution Hox genes determine which part of an embryo develops arms, legs, or wings. Groups of Hox genes also control the size and shape of those structures. Small changes in Hox gene activity during embryological development can produce large changes in adult animals. Lesson Overview Molecular Evolution Change in a Hox Gene Insects and crustaceans are descended from a common ancestor that had many pairs of legs. Crustaceans (such as brine shrimp) still have lots of legs. Insects, however, have only three pairs of legs. Lesson Overview Molecular Evolution Change in a Hox Gene Recent studies have shown that in insects, a mutation in a single Hox gene, called Ubx, “turns off” the growth of some pairs of legs. Because of mutations in a single Hox gene millions of years ago, modern insects have fewer legs than modern crustaceans. A variant of the same Hox gene directs the development of the legs of both animals.