* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Brooker Chapter 12
Histone acetylation and deacetylation wikipedia , lookup
Alternative splicing wikipedia , lookup
Community fingerprinting wikipedia , lookup
Molecular evolution wikipedia , lookup
Transcription factor wikipedia , lookup
Gene regulatory network wikipedia , lookup
RNA interference wikipedia , lookup
Messenger RNA wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Non-coding DNA wikipedia , lookup
Polyadenylation wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Deoxyribozyme wikipedia , lookup
RNA silencing wikipedia , lookup
Promoter (genetics) wikipedia , lookup
Epitranscriptome wikipedia , lookup
Gene expression wikipedia , lookup
Silencer (genetics) wikipedia , lookup
RNA polymerase II holoenzyme wikipedia , lookup
Non-coding RNA wikipedia , lookup
CHAPTER 12 GENE TRANSCRIPTION AND RNA MODIFICATION OVERVIEW OF TRANSCRIPTION  Transcription literally means the act or process of making a copy  In genetics, the term refers to the copying of a DNA sequence into an RNA sequence  The structure of DNA is not altered as a result of this process  It can continue to store information Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-3 • Start codon: specifies the first amino acid in a protein sequence, usually a formylmethionine (in bacteria) or a methionine (in eukaryotes) Signals the end of protein synthesis • Bacterial mRNA may be polycistronic, which means it encodes two or more polypeptides Figure 12.1 12-5 Gene Expression Requires Base Sequences  The strand that is actually transcribed is termed the template strand (top in my diagrams)  The opposite strand is called the coding strand or the sense strand (bottom in my diagrams)  The base sequence is identical to the RNA transcript  Except for the substitution of uracil in RNA for thymine in DNA Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-6 The 3 Stages of Transcription Initiation The promoter functions as a recognition site for transcription factors The transcription factors enable RNA polymerase to bind to the promoter forming a closed promoter complex Following binding, the DNA is denatured into a bubble known as the open promoter complex, or simply an open complex    Elongation RNA polymerase slides along the DNA in an open complex to synthesize the RNA transcript  Termination  Figure 12.2 A termination signal is reached that causes RNA polymerase to dissociated from the DNA 12-8 RNA Transcripts Have Different Functions  Once they are made, RNA transcripts play different functional roles   Refer to Table 12.1 A structural gene is a one that encodes a polypeptide  When such genes are transcribed, the product is an RNA transcript called messenger RNA (mRNA)  Well over 90% of all genes are structural genes Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-9 RNA Transcripts Have Different Functions  The RNA transcripts from nonstructural genes are not translated  They do have various important cellular functions  In some cases, the RNA transcript becomes part of a complex that contains protein subunits  For example  Ribosomes  Spliceosomes  Signal recognition particles Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-10 12-11 TRANSCRIPTION IN BACTERIA Promoters  Promoters are DNA sequences that “promote” gene expression   More precisely, they direct the exact location for the initiation of transcription Promoters are typically located just upstream of the site where transcription of a gene actually begins  The bases in a promoter sequence are numbered in relation to the transcription start site  Refer to Figure 12.3 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-13 Sequence elements that play a key role in transcription Bases preceding this are numbered in a negative direction There is no base numbered 0 Bases to the right are numbered in a positive direction Sometimes termed the Pribnow box, after its discoverer Figure 12.3 The conventional numbering system of promoters Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-14 For many bacterial genes, there is a good correlation between the rate of RNA transcription and the degree of agreement with the consensus sequences The most commonly occurring bases Figure 12.4 Examples of –35 and –10 sequences within a variety of bacterial promoters Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-15 Initiation of transcription - binding of RNA polymerase Amino acids within the a helices hydrogen bond with bases in the promoter sequence elements Figure 12.5 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-18  The binding of the RNA polymerase to the promoter forms the closed complex  Then, the open complex is formed when the TATAAT box is unwound  A short RNA strand is made within the open complex  The sigma factor is released at this point   This marks the end of initiation The core enzyme now slides down the DNA to synthesize an RNA strand Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-19 Figure 12.6 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-20 Elongation in Bacterial Transcription  The RNA transcript is synthesized during the elongation step  The DNA strand used as a template for RNA synthesis is termed the template or noncoding strand  The opposite DNA strand is called the coding strand  It has the same base sequence as the RNA transcript  Except that T in DNA corresponds to U in RNA Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-21 Elongation in Bacterial Transcription  The open complex formed by the action of RNA polymerase is about 17 bases long  Behind the open complex, the DNA rewinds back into the double helix  On average, the rate of RNA synthesis is about 43 nucleotides per second!  Figure 12.7 depicts the key points in the synthesis of the RNA transcript Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-22 Similar to the synthesis of DNA via DNA polymerase Figure 12.7 12-23 Termination of Bacterial Transcription  Termination is the end of RNA synthesis  It occurs when the short RNA-DNA hybrid of the open complex is forced to separate  This releases the newly made RNA as well as the RNA polymerase Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-24 12.3 TRANSCRIPTION IN EUKARYOTES  Many of the basic features of gene transcription are very similar in bacteria and eukaryotes  However, gene transcription in eukaryotes is more complex    Larger organisms Cellular complexity Multicellularity Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-28 Eukaryotic RNA Polymerases  Nuclear DNA is transcribed by three different RNA polymerases  RNA pol I   Transcribes all rRNA genes (except for the 5S rRNA) RNA pol II  Transcribes all structural genes    Thus, synthesizes all mRNAs Transcribes some snRNA genes RNA pol III   Transcribes all tRNA genes And the 5S rRNA gene Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-29 Eukaryotic RNA Polymerases  All three are very similar structurally and are composed of many subunits  There is also a remarkable similarity between the bacterial RNA pol and its eukaryotic counterparts  Refer to Figure 12.10 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-30 Sequences of Eukaryotic Structural Genes  Eukaryotic promoter sequences are more variable and often more complex than those of bacteria  For structural genes, at least three features are found in most promoters  Transcriptional start site TATA box Regulatory elements  Refer to Figure 12.11   Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-31 Figure 12.11  The core promoter is relatively short  It consists of the TATA box   Usually an adenine Important in determining the precise start point for transcription The core promoter by itself produces a low level of transcription  This is termed basal transcription Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-32 Figure 12.11  Usually an adenine Regulatory elements affect the binding of RNA polymerase to the promoter  They are of two types  Enhancers   Silencers   Stimulate transcription Inhibit transcription They vary in their locations but are often found in the –50 to –100 region Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-33 Sequences of Eukaryotic Structural Genes  Factors that control gene expression can be divided into two types, based on their “location”  cis-acting elements    DNA sequences that exert their effect only on nearby genes Example: TATA box, enhancers and silencers trans-acting elements  Regulatory proteins that bind to such DNA sequences Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-34 RNA Polymerase II and its Transcription Factors  Three categories of proteins are required for basal transcription to occur at the promoter     RNA polymerase II Five different proteins called general transcription factors (GTFs) A protein complex called mediator Figure 12.12 shows the assembly of transcription factors and RNA polymerase II at the TATA box Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-35 Figure 12.12 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-36 A closed complex Figure 12.12  TFIIH plays a major role in the formation of the open complex  It has several subunits that perform different functions   One subunit hydrolyzes ATP and phosphorylates a domain in RNA pol II known as the carboxyl terminal domain (CTD)  This releases the contact between TFIIB and RNA pol II Other subunits act as helicases  Promote the formation of the open complex RNA pol II can now proceed to the elongation stage Released after the open complex is formed Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-37 Chromatin Structure and Transcription  The compaction of DNA to form chromatin can be an obstacle to the transcription process  Most transcription occurs in interphase  Then, chromatin is found in 30 nm fibers that are organized into radial loop domains  Within the 30 nm fibers, the DNA is wound around histone octamers to form nucleosomes Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-40 Chromatin Structure and Transcription  The histone octamer is roughly five times smaller than the complex of RNA pol II and the GTFs  The tight wrapping of DNA within the nucleosome inhibits the function of RNA pol  To circumvent this problem, the chromatin structure is significantly loosened during transcription  Two common mechanisms alter chromatin structure Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-41  1. Covalent modification of histones  Amino terminals of histones are modified in various ways  Acetylation; phosphorylation; methylation Adds acetyl groups, thereby loosening the interaction between histones and DNA Figure 12.13 Removes acetyl groups, thereby restoring a tighter interaction Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-42  2. ATP-dependent chromatin remodeling  The energy of ATP is used to alter the structure of nucleosomes and thus make the DNA more accessible Figure 12.13 These effects may significantly alter gene expression Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-43 12.4 RNA MODIFICATION  Analysis of bacterial genes in the 1960s and 1970 revealed the following:   The sequence of DNA in the coding strand corresponds to the sequence of nucleotides in the mRNA This in turn corresponds to the sequence of amino acid in the polypeptide  This is termed the colinearity of gene expression  Analysis of eukaryotic structural genes in the late 1970s revealed that they are not always colinear with their functional mRNAs Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-44 12.4 RNA MODIFICATION  Instead, coding sequences, called exons, are interrupted by intervening sequences or introns  Transcription produces the entire gene product    Introns are later removed or excised Exons are connected together or spliced This phenomenon is termed RNA splicing   It is a common genetic phenomenon in eukaryotes Occurs occasionally in bacteria as well Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-45 12.4 RNA MODIFICATION  Aside from splicing, RNA transcripts can be modified in several ways  For example    Trimming of rRNA and tRNA transcripts 5’ Capping and 3’ polyA tailing of mRNA transcripts See Next Figure…. Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-46 12-47 Trimming  Many nonstructural genes are initially transcribed as a large RNA  This large RNA transcript is enzymatically cleaved into smaller functional pieces  Figure 12.14 shows the processing of mammalian ribosomal RNA Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-48 This processing occurs in the nucleolus Functional RNAs that are key in ribosome structure Figure 12.14 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-49 Splicing  Three different splicing mechanisms have been identified     Group I intron splicing Group II intron splicing Spliceosome All three cases involve   Removal of the intron RNA Linkage of the exon RNA by a phosphodiester bond Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-59  Splicing among group I and II introns is termed self-splicing    Group I and II differ in the way that the intron is removed and the exons reconnected   Splicing does not require the aid of enzymes Instead the RNA itself functions as its own ribozyme Refer to Figure 12.18 Group I and II self-splicing can occur in vitro without the additional proteins  However, in vivo, proteins known as maturases often enhance the rate of splicing Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-60 Figure 12.18 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-61  In eukaryotes, the transcription of structural genes, produces a long transcript known as pre-mRNA  Also as heterogeneous nuclear RNA (hnRNA)  This RNA is altered by splicing and other modifications, before it leaves the nucleus  Splicing in this case requires the aid of a multicomponent structure known as the spliceosome Figure 12.16 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-62 Capping  Most mature mRNAs have a 7-methyl guanosine covalently attached at their 5’ end   Capping occurs as the pre-mRNA is being synthesized by RNA pol II   This event is known as capping Usually when the transcript is only 20 to 25 bases long As shown in Figure 12.19, capping is a three-step process Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-64 Capping  The 7-methylguanosine cap structure is recognized by cap-binding proteins  Cap-binding proteins play roles in the    Movement of some RNAs into the cytoplasm Early stages of translation Splicing of introns Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-67 Tailing  Most mature mRNAs have a string of adenine nucleotides at their 3’ ends   The polyA tail is not encoded in the gene sequence   This is termed the polyA tail It is added enzymatically after the gene is completely transcribed The attachment of the polyA tail is shown in Figure 12.20 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-68 Figure 12.20 Consensus sequence in higher eukaryotes Appears to be important in the stability of mRNA and the translation of the polypeptide Length varies between species From a few dozen adenines to several hundred Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-69 Pre-mRNA Splicing  The spliceosome is a large complex that splices pre-mRNA  It is composed of several subunits known as snRNPs (pronounced “snurps”)  Each snRNP contains small nuclear RNA and a set of proteins Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-70 Pre-mRNA Splicing  The subunits of a spliceosome carry out several functions  1. Bind to an intron sequence and precisely recognize the intron-exon boundaries  2. Hold the pre-mRNA in the correct configuration  3. Catalyze the chemical reactions that remove introns and covalently link exons Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-71  Intron RNA is defined by particular sequences within the intron and at the intron-exon boundaries  The consensus sequences Sequences shown in bold are highly conserved Figure 12.21  Corresponds to the boxed adenine in Figure 12.22 Serve as recognition sites for the binding of the spliceosome The pre-mRNA splicing mechanism is shown in Figure 12.22 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-72 Intron loops out and exons brought closer together Figure 12.22 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-73 Intron will be degraded and the snRNPs used again Figure 12.22 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-74 Intron Advantage?  One benefit of genes with introns is a phenomenon called alternative splicing  A pre-mRNA with multiple introns can be spliced in different ways   This will generate mature mRNAs with different combinations of exons This variation in splicing can occur in different cell types or during different stages of development Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-75 Intron Advantage?  The biological advantage of alternative splicing is that two (or more) polypeptides can be derived from a single gene  This allows an organism to carry fewer genes in its genome Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 12-76
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            