* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Cellular Respiration - Esperanza High School
Mitochondrial replacement therapy wikipedia , lookup
Fatty acid synthesis wikipedia , lookup
Biosynthesis wikipedia , lookup
Magnesium in biology wikipedia , lookup
Butyric acid wikipedia , lookup
Basal metabolic rate wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Photosynthesis wikipedia , lookup
Nicotinamide adenine dinucleotide wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Mitochondrion wikipedia , lookup
Microbial metabolism wikipedia , lookup
Light-dependent reactions wikipedia , lookup
Electron transport chain wikipedia , lookup
Biochemistry wikipedia , lookup
Adenosine triphosphate wikipedia , lookup
Cellular Respiration Cellular Respiration • A catabolic, exergonic, oxygen (O2) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H2O). C6H12O6 + 6O2 6CO2 + 6H2O + energy glucose ATP Question: • In what kinds of organisms does cellular respiration take place? Plants, Animals, Protists, Bacteria, and Fungi!! • Ex: Plants - Autotrophs: selfproducers. • Ex: Animals - Heterotrophs: consumers. Mitochondria • Organelle where cellular respiration takes place. Outer membrane Inner membrane Inner membrane space Matrix Cristae Redox Reaction • Transfer of one or more electrons from one reactant to another. • Two types: 1. Oxidation 2. Reduction Oxidation Reaction • The loss of electrons from a substance. • Or the gain of oxygen. Oxidatio n C6H12O6 + 6O2 glucose 6CO2 + 6H2O + energy ATP Reduction Reaction • The gain of electrons to a substance. • Or the loss of oxygen. Reduction C6H12O6 + 6O2 glucose 6CO2 + 6H2O + energy ATP Breakdown of Cellular Respiration • Four main parts (reactions). 1. Glycolysis (splitting of sugar) a. cytosol, just outside of mitochondria. 2. Grooming Phase a. migration from cytosol to matrix. Breakdown of Cellular Respiration 3. Krebs Cycle (Citric Acid Cycle) a. mitochondrial matrix 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation a. Also called Chemiosmosis b. inner mitochondrial membrane. An Overview of Cellular Respiration 1. Glycolysis • Occurs in the cytosol just outside of mitochondria. • Two phases (10 steps): A. Energy investment phase a. Preparatory phase (first 5 steps). B. Energy yielding phase a. Energy payoff phase (second 5 steps). 1. Glycolysis A. Energy Investment Phase: Glucose (6C) 2ATP C-C-C-C-C-C 2 ATP - used 0 ATP - produced 0 NADH - produced 2ADP + P Glyceraldehyde phosphate (2 - 3C) (G3P or GAP) C-C-C C-C-C 1. Glycolysis B. Energy Yielding Phase Glyceraldehyde phosphate (2 - 3C) (G3P) 4ADP + P 4ATP G3P G3P C-C-C C-C-C 0 ATP - used 4 ATP - produced 2 NADH - produced Pyruvate (2 - 3C) (PYR) C-C-C C-C-C (PYR) (PYR) 1. Glycolysis • Total Net Yield 2 - 3C-Pyruvate (PYR) 2 - ATP (Substrate-level Phosphorylation) 2 - NADH The Energy Input and Output of Glycolysis Substrate-Level Phosphorylation • ATP is formed when an enzyme transfers a phosphate group from a substrate to ADP. Enzyme Example: PEP to PYR Substrate (PEP) Product (Pyruvate) OC=O C-OCH2 OC=O C=O CH2 P P P Adenosine ADP P P P Adenosine ATP Fermentation • Occurs in cytosol when “NO Oxygen” is present (called anaerobic). • Remember: glycolysis is part of fermentation. • Two Types: 1. Alcohol Fermentation 2. Lactic Acid Fermentation Alcoholic Fermentation • Plants and Fungibeer and wine C C C C C C glucose 2ADP +2 P 2ATP 2NADH C C C Glycolysis 2 NAD+ 2NADH 2 Pyruvic acid 2 NAD+ C C 2 Ethanol 2CO2 released Alcoholic Fermentation 2 Pyruvates + 2NADH + 2ATP 2 Ethanols + 2 CO2 + 2 NAD+ Duff Beer Lactic Acid Fermentation • Animals (pain in muscle after a workout) C C C C C C Glucose 2ADP +2 P 2ATP 2NADH C C C Glycolysis 2 NAD+ 2NADH 2 Pyruvic acid 2 NAD+ C C C 2 Lactic acid Lactic Acid Fermentation • End Products: Lactic acid fermentation 2 - ATP (substrate-level phosphorylation) 2 - Lactic Acids 2 – NAD+ 2. Grooming Phase • Occurs when Oxygen is present (aerobic). 2 Pyruvate (3C) molecules are transported through the mitochondria membrane to the matrix and is converted to 2 Acetyl CoA (2C) molecules. Cytosol 2 CO2 C C C Matrix C-C 2 Pyruvate 2 NAD+ 2NADH 2 Acetyl CoA 2. Grooming Phase • End Products: grooming phase 2 - NADH 2 - CO2 2- Acetyl CoA (2C) 3. Krebs Cycle (Citric Acid Cycle) • Location: mitochondrial matrix. • Acetyl CoA (2C) bonds to Oxalacetic acid (4C - OAA) to make Citrate (6C). • It takes 2 turns of the Krebs Cycle to oxidize 1 glucose molecule. Mitochondrial Matrix 3. Krebs Cycle (Citric Acid Cycle) 1 Acetyl CoA (2C) OAA (4C) Citrate (6C) FADH2 Krebs Cycle 2 CO2 (one turn) 3 NAD+ FAD 3 NADH ATP ADP + P 3. Krebs Cycle (Citric Acid Cycle) 2 Acetyl CoA (2C) Citrate (6C) OAA (4C) 2 FADH2 Krebs Cycle 4 CO2 (two turns) 6 NAD+ 2 FAD 6 NADH 2 ATP 2 ADP + P 3. Krebs Cycle (Citric Acid Cycle) • Total net yield (2 turns of Krebs Cycle) 1. 2 - ATP (substrate-level phosphorylation) 2. 6 - NADH 3. 2 - FADH2 4. 4 - CO2 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation (Chemiosmosis) • Location: inner mitochondrial membrane. • Uses ETC (cytochrome proteins) and ATP Synthase (enzyme) to make ATP. • ETC pumps H+ (protons) across innermembrane (lowers pH in innermembrane space). Inner Mitochondrial Membrane 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation (Chemiosmosis) • The H+ then move via diffusion (Proton Motive Force) through ATP Synthase to make ATP. • All NADH and FADH2 converted to ATP during this stage of cellular respiration. • Each NADH converts to 3 ATP. • Each FADH2 converts to 2 ATP (enters the ETC at a lower level than NADH). 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation (Chemiosmosis) Outer membrane Inner membrane Inner membrane space Matrix Cristae Chemiosmosis Couples the Electron Transport Chain to ATP Synthesis Oxidative phosphorylation. electron transport and chemiosmosis Glycolysis ATP Inner Mitochondrial membrane ATP ATP H+ H+ • Chemiosmosis and the electron transport chain H+ H+ Cyt c Intermembrane space Protein complex of electron carners Q I IV III ATP synthase II Inner mitochondrial membrane H2O FADH2 FAD+ NADH+ 2H + + 1/ 2 O2 NAD+ ADP + (Carrying electrons from, food) Mitochondrial matrix Figure 9.15 ATP Pi H+ Electron transport chain Electron transport and pumping of protons (H+), which create an H+ gradient across the membrane Chemiosmosis ATP synthesis powered by the flow Of H+ back across the membrane Oxidative phosphorylation 4. ETC and Oxidative Phosphorylation (Chemiosmosis for NADH) higher H+ concentration Intermembrane Space 1H+ E 2H+ 3H+ T C NAD+ (Proton Pumping) Matrix ATP Synthas e Inner Mitochondrial Membrane O2 H O 2 2H+ + 1/2 NADH + H+ H+ ADP + P H+ ATP lower H+ concentration 4. ETC and Oxidative Phosphorylation (Chemiosmosis for FADH2) higher H+ concentration Intermembrane Space 1H+ E T FADH2 + H+ FAD+ (Proton Pumping) Matrix 2H+ C 2H+ + 1/2O2 H+ ATP Synthas e Inner Mitochondrial Membrane H2O ADP + P H+ ATP lower H+ concentration TOTAL ATP YIELD 1. 04 ATP - substrate-level phosphorylation 2. 34 ATP - ETC & oxidative phosphorylation 18 ATP - converted from 6 NADH - Krebs Cycle 38 ATP - TOTAL YIELD ATP Eukaryotes (Have Membranes) 02 ATP - glycolysis (substrate-level phosphorylation) 04 ATP - converted from 2 NADH - glycolysis 06 ATP - converted from 2 NADH - grooming phase 02 ATP - Krebs cycle (substrate-level phosphorylation) 18 ATP - converted from 6 NADH - Krebs cycle 04 ATP - converted from 2 FADH2 – Krebs cycle 36 ATP - TOTAL Maximum ATP Yield for Cellular Respiration (Eukaryotes) Glucose Cytosol Glycolysis 2 Acetyl CoA 2 Pyruvate Mitochondria Krebs Cycle 2NADH 2 ATP 6NADH 2FADH2 (substrate-level phosphorylation) 2NADH ETC and Oxidative Phosphorylation 2 ATP (substrate-level phosphorylation) 2ATP 4ATP 6ATP 18ATP 4ATP 36 ATP (maximum per glucose) 2ATP Prokaryotes (Lack Membranes) • Total ATP Yield 02 ATP - glycolysis (substrate-level phosphorylation) 06 ATP - converted from 2 NADH - glycolysis 06 ATP - converted from 2 NADH - grooming phase 2 ATP - Krebs cycle (substrate-level phosphorylation) 18 ATP - converted from 6 NADH - Krebs cycle 04 ATP - converted from 2 FADH2 - Krebs cycle 38 ATP - TOTAL Question: • In addition to glucose, what other various food molecules are use in Cellular Respiration? Catabolism of Various Food Molecules • Other organic molecules used for fuel. 1. Carbohydrates: polysaccharides 2. Fats: glycerol and fatty acids 3. Proteins: amino acids