* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 14 Outline
Vectors in gene therapy wikipedia , lookup
Behavioural genetics wikipedia , lookup
Pathogenomics wikipedia , lookup
Epigenetics of neurodegenerative diseases wikipedia , lookup
Saethre–Chotzen syndrome wikipedia , lookup
Gene therapy of the human retina wikipedia , lookup
Genetic engineering wikipedia , lookup
Essential gene wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Public health genomics wikipedia , lookup
X-inactivation wikipedia , lookup
Gene desert wikipedia , lookup
Gene nomenclature wikipedia , lookup
Genetic drift wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Pharmacogenomics wikipedia , lookup
History of genetic engineering wikipedia , lookup
Ridge (biology) wikipedia , lookup
Frameshift mutation wikipedia , lookup
Oncogenomics wikipedia , lookup
Minimal genome wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Genome evolution wikipedia , lookup
Genomic imprinting wikipedia , lookup
Population genetics wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Gene expression programming wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Genome (book) wikipedia , lookup
Designer baby wikipedia , lookup
Gene expression profiling wikipedia , lookup
Quantitative trait locus wikipedia , lookup
Point mutation wikipedia , lookup
Chapter 14 Outline From Gene to Phenotype Complementation – the same mutant phenotype does not necessarily mean that the same gene is affected. Determine this by complementation test. Cross mutants together so resulting organism has one copy of each mutant allele. If the phenotype is wild type, the mutations are in different genes (they complement each other). If the phenotype is mutant, the mutations are in the same gene and form part of the same “complementation group”. Complementation analysis can be done in haploids, such as Neurospora, by means of heterokaryon analysis. Note that in haploid genetics, typically dominance has no meaning. For instance, if two uridine auxotrophs are crossed together, where mutations are in different genes, showing independent assortment, you would get 4 possible haploid outcomes (one with the mutation in gene 1; one with the mutation in gene 2; one with mutations in both genes; and one with two wt alleles). The phenotypic ratio would be 3 auxotrophs: 1 prototroph. Allele Variation Incomplete Dominance: where the phenotype of the heterozygote is intermediate between the two homozygotes. Co-Dominance: where the phenotypic effects of two alleles can be seen concurrently Eg. ABO blood system IA and IB are co-dominant and both are dominant to i. IA and IB code for enzymes that add single monosaccharides to the H tri-saccharide precursor. There exists a rare mutation that causes a defect in the synthesis of the H precursor and is thus epistatic to IA and IB. Describing an allele can depend on the vantage point. HbS, is recessive with respect to the sickle cell anemia phenotype, it shows incomplete dominance with respect to red blood cell morphology, and it is co-dominant at the molecular level. Gene interaction can be inferred from modified di-hybrid ratios. For instance, if two dominant genes are required to achieve a phenotype, the F2 ratio would be (9:7). Another example would be when two genes affect a phenotype, and the presence of one gives an intermediate phenotype (eg. Blue-eyed Mary). A non functional allele early in a pathway would have an epistatic effect on later steps of the pathway (i.e. if an early step is prevented, the allele composition of genes in later steps is irrelevant). The ratio in this example is 9:3:4. Note that these ratios are based on the 9:3:3:1 phenotypic ratio of a Mendelian di-hybrid cross. If the interacting genes are in different pathways, an out-come with a 9:3:3:1 ratio involving 4 distinct phenotypes is possible (eg. Corn snake skin pigmentation). Another example of genes in different pathways is that of suppression, where a mutant phenotype is reversed due to a mutation in a second gene. Complicating factors in genetic analysis include cases where penetrance is not complete. Penetrance is the percentage of individuals where phenotype corresponds with genotype. In addition there can be significant variation in phenotypic expression or expressivity. Finally it is possible that a mutation is pleiotropic (has multiple phenotypic effects) and some effects may not be fully penetrant and/or exhibit variable expressivity. SUGGESTED PROBLEMS Chapter 14: 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 19, 23-25