Download Supplementary Figure Legends - Word file (28 KB )

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Neuroanatomy wikipedia , lookup

Circadian rhythm wikipedia , lookup

Perception of infrasound wikipedia , lookup

Optogenetics wikipedia , lookup

Trans-species psychology wikipedia , lookup

Shift work wikipedia , lookup

Sleep wikipedia , lookup

Channelrhodopsin wikipedia , lookup

Neuropsychopharmacology wikipedia , lookup

Delayed sleep phase disorder wikipedia , lookup

Rapid eye movement sleep wikipedia , lookup

Insomnia wikipedia , lookup

Neuroscience of sleep wikipedia , lookup

Sleep apnea wikipedia , lookup

Sleep paralysis wikipedia , lookup

Sleep and memory wikipedia , lookup

Sleep deprivation wikipedia , lookup

Sleep medicine wikipedia , lookup

Effects of sleep deprivation on cognitive performance wikipedia , lookup

Start School Later movement wikipedia , lookup

Clinical neurochemistry wikipedia , lookup

Transcript
Sehgal Supplementary Figure legends
ms # 2005-07-08291B
Table S1. The GAL4 drivers used are listed alongside their published expression
patterns.
Figure S1. Expression patterns of eight GAL4 drivers within the MB peduncle. (a)
Expression of a nuclear-targeted GFP reporter was driven by each of eight MB GAL4
drivers. Confocal images of brain whole mounts were deconvoluted, and virtual crosssections were reconstructed through the MB peduncle proximal and distal to Kenyon cell
bodies. See (b) for a schematic representation of the structures labeled. Based upon
the plane of the section and proximity to the Kenyon cell bodies, all four fiber tracts may
not be visible in the proximal sections. Examples of alpha/beta expression are denoted
by arrowheads in the MB-Switch and c309 panels. Note that the core region within each
tract shows at best weak expression in MB-Switch and appears absent in c309. (b)
Schematic of MB peduncle anatomy proximal and distal to Kenyon cell bodies1. Axons
extend from Kenyon cell bodies through the peduncle, where they form four main tracts.
Proximal to the Kenyon cell bodies these can be identified in transverse sections of the
peduncle as: four bundles of fibers that extend to the core region of alpha/beta lobes,
four groups of fibers surrounding each of the core bundles that also extend to alpha/beta
lobes, a diffuse group of fibers surrounding the previous two groups that extend to the
alpha’/beta’ lobes, and an outer ring of fibers that extends to the gamma lobes. Distal to
Kenyon cell bodies the four tracts of core and alpha/beta fibers merge into two groups,
and fibers destined for the alpha’/beta’ and gamma lobes become more distinguishable
in cross-sections of the peduncle1. (c) Summary of the expression patterns of MB GAL4
drivers. Expression patterns are denoted with “++” for high levels of fluorescence, “+” for
moderate levels of fluorescence, “+/-“ for low to barely detectable levels of fluorescence
and “-“ for no detectable fluorescence. Since alpha/beta and alpha’/beta’ fibers could not
always be distinguished, we have grouped them here for simplicity. Expression of 201Y
in the alpha/beta core has previously been documented2. Lack of expression of c309 in
the core region has also previously been described3. The panneuronal elavGeneSwitch
driver (Fig 1) also expressed weakly in the core region and strongly in alpha/betaalpha’/beta’ fibers (data not shown).
1.
Strausfeld, N.J., Sinakevitch, I. & Vilinsky, I. The mushroom bodies of Drosophila
melanogaster: an immunocytological and golgi study of Kenyon cell organization in the
calyces and lobes. Microsc Res Tech. 62, 151-69 (2003).
2.
Wang, J., Zugates, C.T., Liang, I.H., Lee, C.H. & Lee, T. Drosophila Dscam is
required for divergent segregation of sister branches and suppresses ectopic bifurcation
of axons. Neuron 14, 559-71 (2002).
3.
Connolly, J.B., Roberts, I.J., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T. &
O’Kane, C.J. Associative learning disrupted by impaired Gs signaling in Drosophila
mushroom bodies. Science 20, 2104-7 (1996).
Figure S2. Expression of constitutively active PKA with the 238Y or 30Y GAL4 drivers
leads to suppression of sleep at night and enhancement of sleep during the day. (a,b)
238Y/UAS-mc*, 30Y/UAS-mc* and control driver/y w females were raised as in Fig 1.
Sleep profiles are means of n=15-16 animals. Data from experimental groups and
controls are represented by stippled and solid lines, respectively. (c,d) GAL4 expression
profiles from 5-9 day old females carrying both the driver and UAS-GFPn transgene.
Brains were prepared as in Fig 2.
Figure S3. Sleep architecture of animals expressing PKA under the control of c309 and
201Y drivers. Animals were prepared as in Fig 1 and analyzed as in Figs 3d,e. (a) Sleep
bout distribution shifts leftward to reflect overall shorter sleep bouts in c309/UAS-mc*
female flies compared to controls. Black bars represent w1118/y w;c309/UAS-mc*; white
bars represent w1118/y w;c309/+; grey bars represent w1118/y w;UAS-mc*/+. (b) Average
daily number of sleep bouts is similar between w1118/y w;c309/UAS-mc* (black bar),
w1118/y w;c309/+ (white bar) and w1118/y w;UAS-mc*/+ (grey bar). (c) Sleep bout
distribution in 201Y/UAS-mc* female flies compared to controls. Black bars represent
w1118/y w;201Y/UAS-mc*; white bars represent w1118/y w;201Y/+; grey bars represent
w1118/y w;UAS-mc*/+. (d) Average daily number of sleep bouts in w1118/y w;201Y/UAS-mc*
(black bar) compared to w1118/y w;201Y/+ (white bar) and w1118/y w;UAS-mc*/+ (grey bar)
controls. N = 30-61 female flies in each group. All calculations are plotted as averages +
SEM. n.s. is not significant and ** p<.01 by 1-way ANOVA. In the case of the latter,
posthoc comparison between w;201Y/UAS-mc* and w1118/y w; UAS-mc*/+ showed a
significant difference while the difference between w;201Y/UAS-mc* and w1118/y w;201Y/+
was marginally insignificant.
Figure S4. MBSwitch/UAS-mc* female flies show homeostatic rebound sleep following 12
hours of mechanical sleep deprivation that is similar in magnitude to PKA-induced
rebound. MBSwitch/UAS-mc* animals were prepared as in Fig 3. After 1.5 days of
acclimation, activity and sleep profiles of uninduced animals were measured for 2.5 days
in LD. Beginning at day 2.5 (lights off) and ending at day 3 (lights on), experimental
animals were shaken for 2 seconds at randomized intervals with a mean inter-shake
interval of 20 seconds. Control animals were undisturbed. (a) During the shaking period,
marked in the figure as “dep”, activity was elevated in experimental animals (dotted line),
but not in genotypically identical control animals (solid line). (b) Sleep in the experimental
group was virtually abolished during the shaking period, while a normal sleep profile was
maintained in control animals. For approximately 8 hours after the deprivation period, the
experimental group slept substantially more than the control group. (c) Sleep in the
control group was subtracted from sleep in the experimental group and integrated over
time to keep a running tabulation of cumulative change in sleep. During the deprivation
period, experimental animals lost ~500 minutes of sleep compared to controls. Following
the deprivation period, the experimental animals recovered 137 + 26 min relative to
controls before resuming a sleep profile with little net change in sleep relative to controls.
Plotted values are derived from means of 21 experimental animals and 25 control
animals.
Figure S5. Decreasing excitability in a subset of MB neurons using the EKO transgene
increases sleep. Animals were prepared and assayed for sleep as in Fig 4. RU486
suppressed sleep slightly in female flies bearing either the MBSwitch driver or 3 copies of
the transgene for UAS-EKO but significantly increased sleep in females carrying the
driver/transgene combination. Black bars represent animals that were fed RU486; white
bars are controls. From left to right: for w1118/y w;2xUAS-EKO/+;MBSwitch/1xUAS-EKO n
= 45; for w1118/y w;;MBSwitch/+ n = 30-31; for w1118/y w;2xUAS-EKO/+;1xUAS-EKO/+ n =
29-49. Plotted values represent averages + SEM. ** p<.01; n.s. is not significant by
unpaired t-test.
Figure S6. Ablation of mushroom bodies with hydroxyurea leads to increased activity and
decreased rest. (a) Daily locomotor activity of HU-treated (black) vs untreated (white)
animals, averaged over 3 days. (b) Average daily locomotor activity divided by waking
time for HU-treated (black) vs control (white) animals. (c) Average daily sleep for HU-
treated (black) vs control (white) animals. N=59 and 53 for drug and no drug, respectively.
All panels depict averages + SEM. ** p<.001; * p<.05 by unpaired t-test.
Figure S7. Model of sleep-regulating circuitry involving MBs. We propose that within the
MBs, sleep-promoting neurons (e.g. 201Y) are normally most active at night, and wake
promoting/sleep-inhibiting neurons (e.g. c309/MBSwitch) are normally most active during
the day (diurnal influences are indicated by upward and downward deflections in
sinusoids). Antagonistic signals from these two sets of cells are integrated to generate
sleep/wake activity cycles. Dashed arrows indicate possible influences of MB neurons
on each other. Constitutive expression of PKA in a single set of relevant MB neurons
leads to increased sleep or waking at temporally ectopic times of day. When PKA is
constitutively expressed in both sets an increase in daytime sleep accompanies a
decrease in nighttime sleep with little net change in total daily sleep (Fig S2). When MBs
are ablated the excitatory influence of the integrator increases waking and locomotion.