* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download mitochondria
Biochemical cascade wikipedia , lookup
Interactome wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
Light-dependent reactions wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Adenosine triphosphate wikipedia , lookup
Endogenous retrovirus wikipedia , lookup
Magnesium transporter wikipedia , lookup
Protein–protein interaction wikipedia , lookup
SNARE (protein) wikipedia , lookup
Biochemistry wikipedia , lookup
Two-hybrid screening wikipedia , lookup
Signal transduction wikipedia , lookup
Citric acid cycle wikipedia , lookup
Proteolysis wikipedia , lookup
Electron transport chain wikipedia , lookup
NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup
Western blot wikipedia , lookup
Oxidative phosphorylation wikipedia , lookup
mitochondria A mitochondrion contains outer and inner membranes composed ofphospholipid bilayers and proteins.[7]The two membranes have different properties. Because of this double-membraned organization, there are five distinct parts to a mitochondrion. They are: the outer mitochondrial membrane, the intermembrane space (the space between the outer and inner membranes), the inner mitochondrial membrane, the cristae space (formed by infoldings of the inner membrane), and the matrix (space within the inner membrane). Mitochondria stripped out their outer membrane are called mitoplasts. Outer membrane • The outer mitochondrial membrane, which encloses the entire organelle, has a protein-to-phospholipid ratio similar to that of the eukaryotic plasma membrane (about 1:1 by weight). It contains large numbers of integral proteins called porins. These porins form channels that allow molecules 5000 Daltons or less in molecular weight to freely diffuse from one side of the membrane to the other.[7] Larger proteins can enter the mitochondrion if a signaling sequence at their N-terminus binds to a large multisubunitprotein called translocase of the outer membrane, which then actively moves them across the membrane.[17] Disruption of the outer membrane permits proteins in the intermembrane space to leak into the cytosol, leading to certain cell death.[18] The mitochondrial outer membrane can associate with the endoplasmic reticulum (ER) membrane, in a structure called MAM (mitochondria-associated ERmembrane). This is important in the ER-mitochondria calcium signaling and involved in the transfer of lipids between the ER and mitochondria Intermembrane space • The intermembrane space is the space between the outer membrane and the inner membrane. It is also known as Perimitochondrial space. Because the outer membrane is freely permeable to small molecules, the concentrations of small molecules such as ions and sugars in the intermembrane space is the same as the cytosol.[7] However, large proteins must have a specific signaling sequence to be transported across the outer membrane, so the protein composition of this space is different from the protein composition of the cytosol. One protein that is localized to the intermembrane space in this way is cytochrome c Inner membrane • • • • • • • The inner mitochondrial membrane contains proteins with five types of functions:[7] Those that perform the redox reactions of oxidative phosphorylation ATP synthase, which generates ATP in the matrix Specific transport proteins that regulate metabolite passage into and out of the matrix Protein import machinery. Mitochondria fusion and fission protein. It contains more than 151 different polypeptides, and has a very high protein-tophospholipid ratio (more than 3:1 by weight, which is about 1 protein for 15 phospholipids). The inner membrane is home to around 1/5 of the total protein in a mitochondrion.[7] In addition, the inner membrane is rich in an unusual phospholipid, cardiolipin. This phospholipid was originally discovered in cowhearts in 1942, and is usually characteristic of mitochondrial and bacterial plasma membranes.[20] Cardiolipin contains four fatty acids rather than two, and may help to make the inner membrane impermeable.[7] Unlike the outer membrane, the inner membrane doesn't contain porins, and is highly impermeable to all molecules. Almost all ions and molecules require special membrane transporters to enter or exit the matrix. Proteins are ferried into the matrix via the translocase of the inner membrane(TIM) complex or via Oxa1.[17] In addition, there is a membrane potential across the inner membrane, formed by the action of the enzymes of the electron transport chain. Cristae • The inner mitochondrial membrane is compartmentalized into numerous cristae, which expand the surface area of the inner mitochondrial membrane, enhancing its ability to produce ATP. For typical liver mitochondria, the area of the inner membrane is about five times as great as the outer membrane. This ratio is variable and mitochondria from cells that have a greater demand for ATP, such as muscle cells, contain even more cristae. These folds are studded with small round bodies known as F1 particles or oxysomes. These are not simple random folds but rather invaginations of the inner membrane, which can affect overallchemiosmotic function.[21] • One recent mathematical modeling study has suggested that the optical properties of the cristae in filamentous mitochondria may affect the generation and propagation of light within the tissue F0-F1 complex subunit composition of ATP synthetase • ATP synthase is a large mushroom-shaped asymmetric protein complex. The simplest bacterial enzyme (see the cartoon below) is composed of 8 subunit types, of which 5 form the catalytic hydrophilic F1-portion (the "cap" of the mushroom). These subunits are named by Greek letters (Alpha, Beta, Gamma, Delta and Epsilon) in accordance with their molecular weight. The proton translocating FO portion is composed of subunits of 3 types named a, b and c. <="" a="" style="color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; whitespace: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;">The catalytic portion of ATP synthase (F1) is formed by Alpha 3 Beta 3 hexamer with Gamma subunit inside it and Epsilon attached to the Gamma. Subunit Delta is bound to the "top" of the hexamer and to subunits b. The hydrophobic transmembrane segment of subunit b is in contact with subunit a. Subunits Gamma and Epsilon of the catalytic domain are bound to the ring-shaped oligomer of c-subunits. Proton translocation take place at the interface of subunits a and c. • • • • • ATP synthase (EC 3.6.3.14) is an important enzyme that provides energy for the cell to use through the synthesis of adenosine triphosphate (ATP). ATP is the most commonly used "energy currency" of cells from most organisms. It is formed from adenosine diphosphate(ADP) and inorganic phosphate (Pi), and needs energy. The overall reaction sequence is: ADP + Pi → ATP, where ADP and Piare joined together by ATP synthase Energy is often released in the form of protium, or H+ , moving down anelectrochemical gradient, such as from the lumen into the stroma ofchloroplasts or from the inter-membrane space into the matrix inmitochondria. ATP synthase (EC 3.6.3.14) is an important enzyme that provides energy for the cell to use through the synthesis of adenosine triphosphate (ATP). ATP is the most commonly used "energy currency" of cells from most organisms. It is formed from adenosine diphosphate(ADP) and inorganic phosphate (Pi), and needs energy. The overall reaction sequence is: ADP + Pi → ATP, where ADP and Piare joined together by ATP synthase Energy is often released in the form of protium, or H+ , moving down anelectrochemical gradient, such as from the lumen into the stroma ofchloroplasts or from the inter-membrane space into the matrix inmitochondria. • • • • • • • • • • • • • Located within the mitochondria, ATP synthase consists of 2 regions the FO portion is within the membrane. The F1 portion of the ATP synthase is above the membrane, inside the matrix of the mitochondria. Mitochondria structure: (1) inner membrane, (2) outer membrane, (3) cristae, (4) matrix The nomenclature of the enzyme has from a long history. The F1 fraction derives its name from the term "Fraction 1" and FO (written as a subscript letter "o", not "zero") derives its name from being the oligomycin binding fraction.[1] Oligomycin, an antibiotic, is able to inhibit the FO unit of ATP synthase. These functional regions consist of different protein subunitsLocated within the mitochondria, ATP synthase consists of 2 regions the FO portion is within the membrane. The F1 portion of the ATP synthase is above the membrane, inside the matrix of the mitochondria. Mitochondria structure: (1) inner membrane, (2) outer membrane, (3) cristae, (4) matrix The nomenclature of the enzyme has from a long history. The F1 fraction derives its name from the term "Fraction 1" and FO (written as a subscript letter "o", not "zero") derives its name from being the oligomycin binding fraction.[1] Oligomycin, an antibiotic, is able to inhibit the FO unit of ATP synthase. These functional regions consist of different protein subunits F1-ATP Synthase structure • The F1 particle is large and can be seen in the transmission electron microscope by negative staining.[2] These are particles of 9 nm diameter that pepper the inner mitochondrial membrane. They were originally called elementary particles and were thought to contain the entire respiratory apparatus of the mitochondrion, but, through a long series of experiments, Ephraim Racker and his colleagues (who first isolated the F1 particle in 1961) were able to show that this particle is correlated with ATPase activity in uncoupled mitochondria and with the ATPase activity in submitochondrial particles created by exposing mitochondria to ultrasound. This ATPase activity was further associated with the creation of ATP by a long series of experiments in many laboratorie • FO-ATP Synthase Structure[edit source | editbeta] • The FO region of ATP synthase is a proton pore that is embedded in the mitochondrial membrane. It consists of three main subunits A, B, and C, and (in humans) six additional subunits, d, e, f, g, F6, and 8 (or A6L). FO-ATP Synthase Structure[edit source | editbeta] • The FO region of ATP synthase is a proton pore that is embedded in the mitochondrial membrane. It consists of three main subunits A, B, and C, and (in humans) six additional subunits, d, e, f, g, F6, and 8 (or A6L). • Subunits of ATP synthase[edit source | editbeta] • ATP synthase alpha/beta subunits • ATP synthase delta subunit • ATP synthase gamma subunit • ATP synthase subunit C Matrix • The matrix is the space enclosed by the inner membrane. It contains about 2/3 of the total protein in a mitochondrion.[7] The matrix is important in the production of ATP with the aid of the ATP synthase contained in the inner membrane. The matrix contains a highly concentrated mixture of hundreds of enzymes, special mitochondrial ribosomes, tRNA, and several copies of themitochondrial DNA genome. Of the enzymes, the major functions include oxidation of pyruvate and fatty acids, and the citric acid cycle.[7] • Mitochondria have their own genetic material, and the machinery to manufacture their own RNAs and proteins (see: protein biosynthesis). A published human mitochondrial DNA sequence revealed 16,569 base pairs encoding 37 total genes: 22 tRNA, 2rRNA, and 13 peptide genes.[23] The 13 mitochondrial peptides in humans are integrated into the inner mitochondrial membrane, along with proteins encoded by genes that reside in the host cell's nucleus. What Is the Purpose of a Mitochondrial Membranes? • • mitochondria contain two major membranes. The outer mitochondrial membrane fully surrounds the inner membrane, with a small intermembrane space in between. The outer membrane has many protein-based pores that are big enough to allow the passage of ions and molecules as large as a small protein. In contrast, the inner membrane has much more restricted permeability, much like the plasma membrane of a cell. The inner membrane is also loaded with proteins involved in electron transport and ATP synthesis. This membrane surrounds the mitochondrial matrix, where the citric acid cycle produces the electrons that travel from one protein complex to the next in the inner membrane. At the end of this electron transport chain, the final electron acceptor is oxygen, and this ultimately forms water (H20). At the same time, the electron transport chain produces ATP. (This is why the the process is called oxidative phosphorylation.) During electron transport, the participating protein complexes push protons from the matrix out to the intermembrane space. This creates a concentration gradient of protons that another protein complex, called ATP synthase, uses to power synthesis of the energy carrier molecule ATP (Figure 2). Figure 2: The electrochemical proton gradient and ATP synthase At the inner mitochondrial membrane, a high energy electron is passed along an electron transport chain. The energy released pumps hydrogen out to the matrix space between the mitochondrial membranes. The gradient created by this high concentration of hydrogen outside of the inner membrane drives hydrogen back through the inner membrane, through ATP synthase. As this happens, the enzymatic activity of ATP synthase synthesizes ATP from ADP. Metabolism in the matrix of mitochondria. Pyruvate and fatty acids are imported from the cytosol and converted to acetyl CoA in the mitochondrial matrix. Acetyl CoA is then oxidized to CO2 via the citric acid cycle, the central pathway of oxidative metabolism. • • The oxidation of acetyl CoA to CO2 is coupled to the reduction of NAD+ and FAD to NADH and FADH2, respectively. Most of the energy derived from oxidative metabolism is then produced by the process ofoxidative phosphorylation (discussed in detail in the next section), which takes place in the inner mitochondrial membrane. The high-energy electrons from NADH and FADH2 are transferred through a series of carriers in the membrane to molecular oxygen. The energy derived from these electron transfer reactions is converted to potential energy stored in a proton gradient across the membrane, which is then used to drive ATP synthesis. The inner mitochondrial membrane thus represents the principal site of ATP generation, and this critical role is reflected in its structure. First, its surface area is substantially increased by its folding into cristae. In addition, the inner mitochondrial membrane contains an unusually high percentage (greater than 70%) of proteins, which are involved in oxidative phosphorylation as well as in the transport of metabolites (e.g., pyruvate and fatty acids) between the cytosol and mitochondria. Otherwise, the inner membrane is impermeable to most ions and small molecules—a property critical to maintaining the proton gradient that drives oxidative phosphorylation. In contrast to the inner membrane, the outer mitochondrial membrane is freely permeable to small molecules. This is because it contains proteins called porins, which form channels that allow the free diffusion of molecules smaller than about 6000 daltons. The composition of the intermembrane space is therefore similar to the cytosol with respect to ions and small molecules. Consequently, the inner mitochondrial membrane is the functional barrier to the passage of small molecules between the cytosol and the matrix and maintains the proton gradient that drives oxidative phosphorylation. Function • The most prominent roles of mitochondria are to produce the energy currency of the cell, ATP (i.e., phosphorylation of ADP), through respiration, and to regulate cellular metabolism.[8] The central set of reactions involved in ATP production are collectively known as the citric acid cycle, or the Krebs Cycle. However, the mitochondrion has many other functions in addition to the production of ATP. Energy conversion • A dominant role for the mitochondria is the production of ATP, as reflected by the large number of proteins in the inner membrane for this task. This is done by oxidizing the major products of glucose, pyruvate, and NADH, which are produced in the cytosol.[8]This process of cellular respiration, also known as aerobic respiration, is dependent on the presence of oxygen. When oxygen is limited, the glycolytic products will be metabolized by anaerobic fermentation, a process that is independent of the mitochondria.[8] The production of ATP from glucose has an approximately 13-times higher yield during aerobic respiration compared to fermentation.[44] Recently it has been shown that plant mitochondria can produce a limited amount of ATP without oxygen by using the alternate substrate nitrite Pyruvate and the citric acid cycle • Each pyruvate molecule produced by glycolysis is actively transported across the inner mitochondrial membrane, and into the matrix where it is oxidized and combined with coenzyme A to form CO2, acetyl-CoA, and NADH.[8] • The acetyl-CoA is the primary substrate to enter the citric acid cycle, also known as the tricarboxylic acid (TCA) cycle or Krebs cycle. The enzymes of the citric acid cycle are located in the mitochondrial matrix, with the exception of succinate dehydrogenase, which is bound to the inner mitochondrial membrane as part of Complex II.[46] The citric acid cycle oxidizes the acetyl-CoA to carbon dioxide, and, in the process, produces reduced cofactors (three molecules of NADH and one molecule ofFADH2) that are a source of electrons for the electron transport chain, and a molecule of GTP (that is readily converted to an ATP) NADH and FADH2: the electron transport chain • • The redox energy from NADH and FADH2 is transferred to oxygen (O2) in several steps via the electron transport chain. These energy-rich molecules are produced within the matrix via the citric acid cycle but are also produced in the cytoplasm by glycolysis. Reducing equivalents from the cytoplasm can be imported via the malate-aspartate shuttle system of antiporter proteins or feed into the electron transport chain using aglycerol phosphate shuttle.[8] Protein complexes in the inner membrane (NADH dehydrogenase (ubiquinone), cytochrome c reductase, andcytochrome c oxidase) perform the transfer and the incremental release of energy is used to pump protons (H+) into the intermembrane space. This process is efficient, but a small percentage of electrons may prematurely reduce oxygen, forming reactive oxygen species such assuperoxide.[8] This can cause oxidative stress in the mitochondria and may contribute to the decline in mitochondrial function associated with the aging process.[47] As the proton concentration increases in the intermembrane space, a strong electrochemical gradient is established across the inner membrane. The protons can return to the matrix through the ATP synthase complex, and their potential energy is used to synthesize ATP from ADP and inorganic phosphate (Pi).[8] This process is called chemiosmosis, and was first described by Peter Mitchell[48][49] who was awarded the 1978 Nobel Prize in Chemistry for his work. Later, part of the 1997 Nobel Prize in Chemistry was awarded to Paul D. Boyer and John E. Walker for their clarification of the working mechanism of ATP synthase Heat production • Under certain conditions, protons can re-enter the mitochondrial matrix without contributing to ATP synthesis. This process is known as proton leak or mitochondrial uncoupling and is due to the facilitated diffusion of protons into the matrix. The process results in the unharnessed potential energy of the proton electrochemical gradient being released as heat.[8] The process is mediated by a proton channel called thermogenin, or UCP1.[51] Thermogenin is a 33kDa protein first discovered in 1973.[52]Thermogenin is primarily found in brown adipose tissue, or brown fat, and is responsible for non-shivering thermogenesis. Brown adipose tissue is found in mammals, and is at its highest levels in early life and in hibernating animals. In humans, brown adipose tissue is present at birth and decreases with age. Storage of calcium ions • • The concentrations of free calcium in the cell can regulate an array of reactions and is important for signal transduction in the cell. Mitochondria can transiently store calcium, a contributing process for the cell's homeostasis of calcium.[53] In fact, their ability to rapidly take in calcium for later release makes them very good "cytosolic buffers" for calcium.[54][55][56] The endoplasmic reticulum (ER) is the most significant storage site of calcium, and there is a significant interplay between the mitochondrion and ER with regard to calcium.[57] The calcium is taken up into the matrix by a calcium uniporter on the inner mitochondrial membrane.[58] It is primarily driven by the mitochondrialmembrane potential.[53] Release of this calcium back into the cell's interior can occur via a sodium-calcium exchange protein or via "calcium-induced-calcium-release" pathways.[58] This can initiate calcium spikes or calcium waves with large changes in the membrane potential. These can activate a series of second messenger system proteins that can coordinate processes such asneurotransmitter release in nerve cells and release of hormones in endocrine cells. Ca2+ influx to the mitochondrial matrix has recently been implicated as a mechanism to regulate respiratory bioenergetics by allowing the electrochemical potential across the membrane to transiently "pulse" from ΔΨ-dominated to pH-dominated, facilitating a reduction of oxidative stress.[59]In neurons, concominant increases in cytosolic and mitochondrial calcium act to synchronize neuronal activity with mitochondrial energy metabolism. Mitochondrial matrix calcium levels can reach the tens of micromolar levels, which is necessary for the activation of isocitrate dehydrogenase, one of the key regulatory enzymes of the Kreb's cycle. Additional functions • Mitochondria play a central role in many other metabolic tasks, such as: • Signaling through mitochondrial reactive oxygen species[61] • Regulation of the membrane potential[8] • Apoptosis-programmed cell death[62] • Calcium signaling (including calcium-evoked apoptosis)[63] • Regulation of cellular metabolism[64] • Certain heme synthesis reactions[65] (see also: porphyrin) • Steroid synthesis.[54] • Some mitochondrial functions are performed only in specific types of cells. For example, mitochondria in liver cells contain enzymes that allow them to detoxify ammonia, a waste product of protein metabolism. A mutation in the genes regulating any of these functions can result in mitochondrial diseases. Mitochondrial DNA • The human mitochondrial genome is a circular DNA molecule of about 16 kilobases.[83]It encodes 37 genes: 13 for subunits of respiratory complexes I, III, IV and V, 22 for mitochondrial tRNA (for the 20 standard amino acids, plus an extra gene for leucine and serine), and 2 for rRNA.[83] One mitochondrion can contain two to ten copies of its DNA.[84] • As in prokaryotes, there is a very high proportion of coding DNA and an absence of repeats. Mitochondrial genes are transcribed as multigenic transcripts, which are cleaved and polyadenylated to yield mature mRNAs. Not all proteins necessary for mitochondrial function are encoded by the mitochondrial genome; most are coded by genes in the cell nucleus and the corresponding proteins are imported into the mitochondrion.[23] The exact number of genes encoded by the nucleus and themitochondrial genome differs between species. Most mitochondrial genomes are circular, although exceptions have been reported.[85] In general, mitochondrial DNA lacks introns, as is the case in the human mitochondrial genome;[23] however, introns have been observed in some eukaryotic mitochondrial DNA,[86] such as that of yeast[87] and protists,[88] including Dictyosteliumdiscoideum • In animals the mitochondrial genome is typically a single circular chromosome that is approximately 16 kb long and has 37 genes. The genes, while highly conserved, may vary in location. Curiously, this pattern is not found in the human body louse (Pediculus humanus). Instead this mitochondrial genome is arranged in 18 minicircular chromosomes, each of which is 3–4 kb long and has one to three genes.[90] This pattern is also found in other sucking lice, but not in chewing lice. Recombination has been shown to occur between the minichromosomes. The reason for this difference is not known. • While slight variations on the standard code had been predicted earlier,[91] none was discovered until 1979, when researchers studying human mitochondrial genes determined that they used an alternative code.[92] Although, the mitochondria of many other eukaryotes, including most plants, use the standard code.[93] Many slight variants have been discovered since,[94] including various alternative mitochondrial codes.[95] Further, the AUA, AUC, and AUU codons are all allowable start codons. Replication and inheritance • Mitochondria divide by binary fission, similar to bacterial cell division.[99] The regulation of this division differs between eukaryotes. In many single-celled eukaryotes, their growth and division is linked to the cell cycle. For example, a single mitochondrion may divide synchronously with the nucleus. This division and segregation process must be tightly controlled so that each daughter cell receives at least one mitochondrion. In other eukaryotes (in mammals for example), mitochondria may replicate their DNA and divide mainly in response to the energy needs of the cell, rather than in phase with the cell cycle. When the energy needs of a cell are high, mitochondria grow and divide. When the energy use is low, mitochondria are destroyed or become inactive. In such examples, and in contrast to the situation in many single celled eukaryotes, mitochondria are apparently randomly distributed to the daughter cells during the division of the cytoplasm. Understanding of mitochondrial dynamics, which is described as the balance between mitochondrial fusion and fission, has revealed that functional and structural alterations in mitochondrial morphology are important factors in pathologies associated with several disease conditions • An individual's mitochondrial genes are not inherited by the same mechanism as nuclear genes. Typically, the mitochondria are inherited from one parent only. In humans, when an egg cell is fertilized by a sperm, the egg nucleus and sperm nucleus each contribute equally to the genetic makeup of the zygote nucleus. In contrast, the mitochondria, and therefore the mitochondrial DNA, usually come from the egg only. The sperm's mitochondria enter the egg but do not contribute genetic information to the embryo.[101] Instead, paternal mitochondria are marked with ubiquitin to select them for later destruction inside the embryo.[102]The egg cell contains relatively few mitochondria, but it is these mitochondria that survive and divide to populate the cells of the adult organism. Mitochondria are, therefore, in most cases inherited only from mothers, a pattern known as maternal inheritance. This mode is seen in most organisms including the majority of animals. However, mitochondria in some species can sometimes be inherited paternally. This is the norm among certain coniferous plants, although not in pine trees and yew trees.[103] ForMytilidae mussels paternal inheritance only occurs within males of the species.[104][105][106] It has been suggested that it occurs at a very low level in humans.[107] There is a recent suggestion mitochondria that shorten male lifespan stay in the system because mitochondria are inherited only through the mother. By contrast natural selection weeds out mitochondria that reduce female survival as such mitochondria are less likely to be passed on to the next generation. Therefore it is suggested human females and female animals tend to live longer than males. The authors claim this is a partial explanation • Uniparental inheritance leads to little opportunity for genetic recombination between different lineages of mitochondria, although a single mitochondrion can contain 2–10 copies of its DNA.[84] For this reason, mitochondrial DNA usually is thought to reproduce by binary fission. What recombination does take place maintains genetic integrity rather than maintaining diversity. However, there are studies showing evidence of recombination in mitochondrial DNA. It is clear that the enzymes necessary for recombination are present in mammalian cells.[109] Further, evidence suggests that animal mitochondria can undergo recombination.[110] The data are a bit more controversial in humans, although indirect evidence of recombination exists.[111][112] If recombination does not occur, the whole mitochondrial DNA sequence represents a single haplotype, which makes it useful for studying the evolutionary history of populations Is the Mitochondrial Genome Still Functional? • Mitochondrial genomes are very small and show a great deal of variation as a result of divergent evolution. Mitochondrial genes that have been conserved across evolution include rRNA genes, tRNA genes, and a small number of genes that encode proteins involved in electron transport and ATP synthesis. The mitochondrial genome retains similarity to its prokaryotic ancestor, as does some of the machinery mitochondria use to synthesize proteins. In fact, mitochondrial rRNAs more closely resemble bacterial rRNAs than the eukaryotic rRNAs found in cell cytoplasm. In addition, some of the codons that mitochondria use to specify amino acids differ from the standard eukaryotic codons. Still, the vast majority of mitochondrial proteins are synthesized from nuclear genes and transported into the mitochondria. These include the enzymes required for the citric acid cycle, the proteins involved in DNA replication and transcription, and ribosomal proteins. The protein complexes of the respiratory chain are a mixture of proteins encoded by mitochondrial genes and proteins encoded by nuclear genes. Proteins in both the outer and inner mitochondrial membranes help transport newly synthesized, unfolded proteins from the cytoplasm into the matrix, where folding ensues Figure 3: Protein import into a mitochondrion A signal sequence at the tip of a protein (blue) recognizes a receptor protein (pink) on the outer mitochondrial membrane and sticks to it. This causes diffusion of the tethered protein and its receptor through the membrane to a contact site, where translocator proteins line up (green). When at this contact site, the receptor protein hands off the tethered protein to the translocator protein, which then channels the unfolded protein past both the inner and outer mitochondrial membranes. The Genetic System of Mitochondria • Mitochondria contain their own genetic system, which is separate and distinct from the nuclear genome of the cell. As reviewed in Chapter 1, mitochondria are thought to have evolved from bacteria that developed a symbiotic relationship in which they lived within larger cells (endosymbiosis). This hypothesis has recently been substantiated by the results of DNA sequence analysis, which revealed striking similarities between the genomes of mitochondria and of the bacterium Rickettsia prowazekii. Rickettsia are intracellular parasites which, like mitochondria, are only able to reproduce within eukaryotic cells. Consistent with their similar symbiotic lifestyles, the genomic DNA sequences of Rickettsia and mitochondria suggest that they share a common ancestor, from which the genetic system of present-day mitochondria evolved. • Mitochondrial genomes are usually circular DNA molecules, like those of bacteria, which are present in multiple copies per organelle. They vary considerably in size between different species. The genomes of human and most other animal mitochondria are only about 16 kb, but substantially larger mitochondrial genomes are found in yeasts (approximately 80 kb) and plants (more than 200 kb). However, these larger mitochondrial genomes are composed predominantly of noncoding sequences and do not appear to contain significantly more genetic information. For example, the largest sequenced mitochondrial genome is that of the plant Arabidopsis thaliana. Although Arabidopsis mitochondrial DNA is approximately 367 kb, it encodes only 32 proteins: just more than twice the number encoded by human mitochondrial DNA. The largest number of mitochondrial genes has been found in mitochondrial DNA of the protozoanReclinomonas americana, which is 69 kb and contains 97 genes. The mitochondrial genome ofReclinomonas appears to more closely resemble the bacterial genome from which mitochondria evolved than most present-day mitochondrial genomes, which encode only a small number of proteins that are essential components of the oxidative phosphorylation system. In addition, mitochondrial genomes encode all of the ribosomal RNAs and most of the transfer RNAs needed for translation of these protein-coding sequences within mitochondria. Other mitochondrial proteins are encoded by nuclear genes, which are thought to have been transferred to the nucleus from the ancestral mitochondrial genome. • The human mitochondrial genome encodes 13 proteins involved in electron transport and oxidative phosphorylation (Figure 10.3). In addition, human mitochondrial DNA encodes 16S and 12S rRNAs and 22 tRNAs, which are required for translation of the proteins encoded by the organelle genome. The two rRNAs are the only RNA components of animal and yeast mitochondrial ribosomes, in contrast to the three rRNAs of bacterial ribosomes (23S, 16S, and 5S). Plant mitochondrial DNAs, however, also encode a third rRNA of 5S. The mitochondria of plants and protozoans also differ in importing and utilizing tRNAs encoded by the nuclear as well as the mitochondrial genome, whereas in animal mitochondria, all the tRNAs are encoded by the organelle The human mitochondrial genome The genome contains 13 proteincoding sequences, which are designated as components of respiratory complexes I, III, IV, or V. In addition, the genome contains genes for 12S and 16S rRNAs and for 22 tRNAs, which are designated by the one-letter code for the corresponding amino acid. The region of the genome designated “D loop” contains an origin of DNA replication and transcriptional promoter sequences. • The small number of tRNAs encoded by the mitochondrial genome highlights an important feature of the mitochondrial genetic system—the use of a slightly different genetic code, which is distinct from the “universal” genetic code used by both prokaryotic and eukaryotic cells (Table 10.1). As discussed in Chapter 3, there are 64 possible triplet codons, of which 61 encode the 20 different amino acids incorporated into proteins (see Table 3.1). Many tRNAs in both prokaryotic and eukaryotic cells are able to recognize more than a single codon in mRNA because of “wobble,” which allows some mispairing between the tRNA anticodon and the third position of certain complementary codons (see Figure 7.3). However, at least 30 different tRNAs are required to translate the universal code according to the wobble rules. Yet human mitochondrial DNA encodes only 22 tRNA species, and these are the only tRNAs used fortranslation of mitochondrial mRNAs. This is accomplished by an extreme form of wobble in which U in the anticodon of the tRNA can pair with any of the four bases in the third codon position of mRNA, allowing four codons to be recognized by a single tRNA. In addition, some codons specify different amino acids inmitochondria than in the universal code. • Like the DNA of nuclear genomes, mitochondrial DNA can be altered by mutations, which are frequently deleterious to the organelle. Since almost all the mitochondria of fertilized eggs are contributed by the oocyte rather than by the sperm, germ-line mutations in mitochondrial DNA are transmitted to the next generation by the mother. Such mutations have been associated with a number of diseases. For example, Leber's hereditary optic neuropathy, a disease that leads to blindness, can be caused by mutations in mitochondrial genes that encode components of the electron transport chain. In addition, the progressive accumulation of mutations in mitochondrial DNA during the lifetime of individuals has been suggested to contribute to the process of aging. Protein Import and Mitochondrial Assembly • In contrast to the RNA components of the mitochondrial translation apparatus (rRNAs and tRNAs), most mitochondrial genomes do not encode the proteins required for DNA replication, transcription, or translation. Instead, the genes that encode proteins required for the replication and expression of mitochondrial DNA are contained in the nucleus. In addition, the nucleus contains the genes that encode most of the mitochondrial proteins required for oxidative phosphorylation and all of the enzymes involved in mitochondrial metabolism (e.g., enzymes of the citric acid cycle). The proteins encoded by these genes (more than 95% of mitochondrial proteins) are synthesized on free cytosolic ribosomes and imported intomitochondria as completed polypeptide chains. Because of the double-membrane structure of mitochondria, the import of proteins is considerably more complicated than the transfer of a polypeptide across a single phospholipid bilayer. Proteins targeted to the matrix have to cross both the inner and outer mitochondrial membranes, while other proteins need to be sorted to distinct compartments within the organelle (e.g., the intermembrane space). • The import of proteins to the matrix is the best-understood aspect of mitochondrial protein sorting (Figure 10.4). Most proteins are targeted to mitochondria by aminoterminal sequences of 20 to 35 amino acids (called presequences) that are removed by proteolytic cleavage following their import into the organelle. The presequences of mitochondrial proteins, first characterized by Gottfried Schatz, contain multiple positively charged amino acid residues, usually in an amphipathic α helix. The first step in protein import is the binding of these presequences to receptors on the surface of mitochondria. The polypeptide chains are then inserted into a protein complex that directs translocation across the outer membrane (the translocase of the outer membrane or Tom complex). The proteins are then transferred to a second protein complex in the inner membrane (the translocase of the inner membrane or Tim complex). Continuing protein translocation requires the electrochemical potential established across the inner mitochondrial membrane during electron transport. As discussed in the next section of this chapter, the transfer of high-energy electrons from NADH and FADH2 to molecular oxygen is coupled to the transfer of protons from the mitochondrial matrix to the intermembrane space. Since protons are charged particles, this transfer establishes an electric potential across the inner membrane, with the matrix being negative. During protein import, this electric potential drives translocation of the positively charged presequence. Import of proteins into mitochondria Proteins are targeted for mitochondria by an amino-terminal presequence containing positively charged amino acids. Proteins are maintained in a partially unfolded state by association with a cytosolic Hsp70 and are recognized by a receptor on the surface of mitochondria. The unfolded polypeptide chains are then translocated through the Tom complex in the outer membrane and transferred to the Tim complex in the inner membrane. The voltage component of the electrochemical gradient is required for translocation across the inner membrane. The presequence is cleaved by a matrix protease, and a mitochondrial Hsp70 binds the polypeptide chain as it crosses the inner membrane, driving further protein translocation. A mitochondrial Hsp60 then facilitates folding of the imported polypeptide within the matrix. • To be translocated across the mitochondrial membrane, proteins must be at least partially unfolded. Consequently, protein import into mitochondria requires molecular chaperones in addition to the membrane proteins involved in translocation (see Figure 10.4). On the cytosolic side, members of the Hsp70 family of chaperones maintain proteins in a partially unfolded state so that they can be inserted into the mitochondrial membrane. As they cross the inner membrane, the unfolded polypeptide chains bind to another member of the Hsp70 family, which is associated with the Tim complex and acts as a motor that drives protein import. The polypeptide is then transferred to a chaperone of the Hsp60 family (a chaperonin), within which protein folding takes place. Since these interactions of polypeptide chains with molecular chaperones depend on ATP, protein import requires ATP both outside and inside the mitochondria, in addition to the electric potential across the inner membrane. • As noted above, some mitochondrial proteins are targeted to the outer membrane, inner membrane, or intermembrane space rather than to the matrix, so additional mechanisms are needed to direct these proteins to the correct submitochondrial compartment. These proteins are targeted to their destinations by a second sorting signal following the positively charged presequence that directs mitochondrial import. The targeting of proteins to the mitochondrial membranes appears to be mediated by hydrophobic stoptransfer sequences that halt translocation of the polypeptide chains through the Tim or Tom complexes, leading to their insertion into the inner or outer mitochondrial membranes, respectively (Figure 10.5). Proteins may be targeted to the intermembrane space by several different mechanisms (Figure 10.6). Some proteins are transferred across the outer membrane through the Tom complex but are then released within the intermembrane space instead of being transferred to the Tim complex. Other proteins are transferred to the Tim complex but are then released into the intermembrane space as a result of cleavage of hydrophobic stop-transfer sequences. Still other proteins may be completely imported into the mitochondrial matrix and then exported back across the inner membrane to the intermembrane space. Insertion of mitochondrial membrane proteins Proteins targeted for the mitochondrial membranes contain hydrophobic stop-transfer sequences that halt their translocation through the Tom or Tim complexes and lead to their incorporation into the outer or inner membranes, respectively. Sorting proteins to the intermembrane space Proteins can be targeted to the intermembrane space by several mechanisms. Some proteins (I) are translocated through the Tom complex and released into the intermembrane space. Other proteins (II) are transferred from the Tom complex to the Tim complex, but they contain hydrophobic stop-transfer sequences that halt translocation through the Tim complex. These stop-transfer sequences are then cleaved to release the proteins into the intermembrane space. Still other proteins (III) are imported to the matrix, as depicted in Figure 10.4. Removal of the presequence within the matrix then exposes a hydrophobic signal sequence, which targets the protein back across the inner membrane to the intermembrane space • Not only the proteins, but also the phospholipids of mitochondrial membranes are imported from the cytosol. In animal cells, phosphatidylcholine and phosphatidylethanolamine are synthesized in the ER and carried to mitochondria by phospholipid transfer proteins, which extract single phospholipid molecules from the membrane of the ER. The lipid can then be transported through the aqueous environment of the cytosol, buried in a hydrophobic binding site of the protein, and released when the complex reaches a new membrane, such as that of mitochondria. The mitochondria then synthesize phosphatidylserine from phosphatidylethanolamine, in addition to catalyzing the synthesis of the unusual phospholipid cardiolipin, which contains four fatty acid chains