* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Dias nummer 1 - Atmospheric Composition Change
Media coverage of global warming wikipedia , lookup
Atmospheric model wikipedia , lookup
Attribution of recent climate change wikipedia , lookup
Scientific opinion on climate change wikipedia , lookup
Climate change feedback wikipedia , lookup
Surveys of scientists' views on climate change wikipedia , lookup
Global warming wikipedia , lookup
Effects of global warming on humans wikipedia , lookup
Climate change and agriculture wikipedia , lookup
Politics of global warming wikipedia , lookup
Climate change mitigation wikipedia , lookup
Climate engineering wikipedia , lookup
Solar radiation management wikipedia , lookup
Public opinion on global warming wikipedia , lookup
Climate change, industry and society wikipedia , lookup
Emissions trading wikipedia , lookup
Climate change and poverty wikipedia , lookup
Citizens' Climate Lobby wikipedia , lookup
Effects of global warming on Australia wikipedia , lookup
Climate governance wikipedia , lookup
Kyoto Protocol wikipedia , lookup
Mitigation of global warming in Australia wikipedia , lookup
Economics of global warming wikipedia , lookup
European Union Emission Trading Scheme wikipedia , lookup
German Climate Action Plan 2050 wikipedia , lookup
Low-carbon economy wikipedia , lookup
United Nations Framework Convention on Climate Change wikipedia , lookup
Years of Living Dangerously wikipedia , lookup
Climate change in the United States wikipedia , lookup
General circulation model wikipedia , lookup
2009 United Nations Climate Change Conference wikipedia , lookup
Economics of climate change mitigation wikipedia , lookup
Climate change in New Zealand wikipedia , lookup
IPCC Fourth Assessment Report wikipedia , lookup
The effect of climate and climate change on ammonia emissions in Europe Camilla Geels1 and Carsten Ambelas Skjøth 2 1Department of Environmental Science, Aarhus University, Denmark. 2 National Pollen and Aerobiology Research Unit, University of Worcester, UK. With contributions from Ole Hertel, Jesper H. Christensen, Steen Gyldenkærne, Thomas Ellermann, Helle Vibeke Andersen, Jørgen Brandt Department of Environmental Science, Aarhus University, Denmark. ACCENT-plus Symposium, Urbino 2013 Link between the trends in human population and NH3 use throughout the twentieth century: The Haber-Bosch process “the most important invention of the 20th century” made it possible to produce ammonia (NH3) from hydrogen and nitrogen Converts nitrogen into a bioavailable form! From: How a century of ammonia synthesis changed the world Erisman et al., Nature Geoscience 1, 636 - 639 (2008). ACCENT-plus Symposium, Urbino 2013 NH3 mission changes globally and in Europe: European Environment Agency (EEA). ACCENT-plus Symposium, Urbino 2013 Current regional CTM studies of NH3: Seasonal factor for snap 10 (source: EURODELTA) 1.6 Factor 1.2 0.8 0.4 0 1 2 3 4 5 6 7 8 9 10 11 12 Month Annual emission inventories Based on national emissions factors. Standard temporal profiles. BUT: NH3 emissions from agricultural production are very sensitive to climatic drivers (temperature, water availability). A central question in the ECLAIRE project is: “Will climate warming increase NH3 emissions and to what extend will this hinder NH3 mitigation efforts?” A different approach is needed. ACCENT-plus Symposium, Urbino 2013 The Danish Dynamic NH3 emission model Was originally developed for Denmark[1,2] – now extended to part of Europe[3]. Function Based on: 1.) 16 different functions describing the temporal variation in NH3 emissions from various activities. 2.) information on number and type of animals, type of crop, sale of manure/fertilizer etc. So this is required on as high spatial resolution as possible. Description Fkt 1 Animal houses with forced ventilation Fkt 2 Open animal houses (non-forced ventilation) Fkt 3 Manure storages Fkt 4 Winter crops (no emission simulated in this study) Fkt 5 Spring crops (no emission simulated in this study) Fkt 6 Late spring crops (no emission simulated in this study) Fkt 7 Grass Fkt 8 Spring application of manure on bare soil Fkt 9 Application of manure on crops Fkt 10 Summer application of manure Fkt 11 Autumn application of manure Fkt 12 Spring application of fertilizer (90% of all fertilizer) Fkt 13 Summer application of fertilizer (10% of all fertilizer) Fkt 14 Emission related to grassing cattle Fkt 15 Emissions related to ammonia treated straw Fkt 16 Emissions related to personal vehicles with catalytic converters 1 [1] Skjøth et al,(2004) Implementing a dynamical ammonia emission parameterization in the large-scale air pollution model ACDEP109, D06306, doi:10.1029/2003JD003895. [2] Gyldenkærne et al (2005) A dynamical ammonia emission parameterization for use in air pollution models, JGR, 110, D07108, doi:10.1029/2004JD005459. [3] Skjøth et al (2011). Spatial and temporal variations in ammonia emissions - a freely accessible model code for Europe: Atmos. Chem. Phys., 11, 5221-5236. ACCENT-plus Symposium, Urbino 2013 Backbone of the dynamic ammonia model [1] • Point sources: emission from stables and manure storages depends on outdoor/indoor temperature and ventilation[2] – Pigs/chicken requires a high minimum temperature – Cattle manages relatively low temperatures The farmers use heating/ventilation to keep the animals happy … ET 0 .8 9 • Area sources: emissions from agricultural fields depends on e.g. crop growth/application of manure described by Gauss functions[2] – also a function of T. • Local temperature provided by meteorological data used in the CTM model. • Usually scaled to official annual emissions, so only intra-annual (seasonal/diurnal) emission variation used…. [1] Skjøth et al,(2004) Implementing a dynamical ammonia emission parameterization in the large-scale air pollution model ACDEP109, D06306, doi:10.1029/2003JD003895. ACCENT-plus Urbinoemission 2013parameterization for use in air pollution models, JGR, 110, D07108, doi:10.1029/2004JD005459. [2] Gyldenkærne et alSymposium, (2005) A dynamical ammonia Example from Denmark – change in seasonal profile due to development in agricultural sector (1985-2003) [4] Fig 1. 12 10 8 6 4 2 12 10 8 6 4 2 0 0 1 31 61 91 121 151 181 211 241 271 301 Day Buildings 12 Crops 2000 331 1 361 Grazing 8 6 Change in 4 Danish 2 regulation 0 Other 61 61 91 121 151 181 211 241 271 301 331 361 Art. Fertilizer Manure Main activities 1985 [kTon N] 1990 [kTon N] 1995 [kTon N] 2000 [kTon N] 2003 [kTon N] Pig houses 19.787 18.674 17.979 18.578 18.578 Cattle barns 10.926 10.614 9.104 9.598 9.598 Storage 13.936 12.298 11.125 10.176 9.136 Crops 13.174 13.010 11.125 11453 11.476 Manure early spring 6.722 6.042 6.120 5.941 4.330 Manure in crops 5.491 6.680 11.296 14.183 14.129 3.207 1.834 512 1.806 1.114 640 Manure summer 31 31 Day 10 1 Fig 3. Fig 2. 2000 Emission [kg N/km²] Emission [kg N/km²] 1989 91 121 Manure autumn 8.106 151 Manure late autumn 181 Day 211 6.232 7.396 241 271 4.826 301 331 361 13.256 10.306 4.156 1.429 640 Mineral fertilizer 7.870 8.662 7.606 5.582 4.437 Grassing animals 2.591 2.413 2.500 2.370 2.257 Ammonia treatment 6.551 10.210 6.647 2.471 661 Traffic 0.053 0.106 0.993 1.828 1.989 Total 114.695 111.236 94.196 86.556 80.391 [4] Skjøth et al (2008), JAWMA, Footprints on ammonia concentrations from Environmental regulations, JAWMA, 58: 1158-1165. ACCENT-plus Symposium, Urbino 2013 Application of the Danish Ammonia Modelling System: DAMOS[5,6,7] -regional to local scales. Covered by existing emission model 150 km x 150 km 50 km x 50 km OML-DEP[7] ~ 17 km x 17 km DEHM[6] ~ 6 km x 6 km 400 m x 400 m [5] Geels et al, (2012) Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS: Biogeosciences, 9, 2625-2647. [6] Brandt et al (2012). An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution: Atmos. Environ., Atmos. Environ., 53, 156-176. [7] Sommer et al (2009) Validation of model calculation of ammonia deposition in the neighbourhood of a poultry farm using measured NH3 concentrations and N deposition: Atmos. Environ., 43, 915-920. Urbino 2013 ACCENT-plus Symposium, Weekly NH3 concentration at Lindet.[5] DAMOS: Corr=0.72 Bias=0.11 2005 DEHM Corr=0.67 Bias=0.64 2006 2007 2008 2009 •Strong seasonal cycle captured by both DAMOS and DEHM[5] •Overestimating some spring peaks[5] •Week-to-week variability also captured[5] •DAMOS closer to measured level[5] [5] Geels et al, (2012) Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS: Biogeosciences, 9, 2625-2647. ACCENT-plus Symposium, Urbino 2013 The new sensitivity study carried out in ECLAIRE (WP6): Analysing the effect of temperature variations: - From location to location - Due to climate change The dynamic NH3 emissions model forced with hourly bias corrected climate data (based on a data fusion of ENSEMBLES climate data and reanalyses meteorology). New paper in ACP: The effect of climate and climate change on ammonia emissions in Europe by Skjøth and Geels Atmos. Chem. Phys., 13, 117–128, 2013 ACCENT-plus Symposium, Urbino 2013 Test case: A storage related to a pig stable facility with 1000 animals - with the same production methods as in Denmark. Placed throughout the domain – so forced with different temperatures. ACCENT-plus Symposium, Urbino 2013 Spatial variations in NH3 emission (standard Danish storage moved to other locations). Area Emission [kg NH3/year] 2007 DK 506 Difference [%] 5 Area Emission [kg NH3/year] GE 541 Difference [%] 13 Note the diff. within GE Area Area Emission [kg NH3/year] GE UK Emission [kg NH3/year] 374 Difference [%] -22 579 Difference [%] 21 mountainous regions Relative to mean 2006-2010 at Tange in Dk. Area Emission [kg NH3/year] Difference [%] Area FR 577 20 ACCENT-plus Symposium, Urbino 2013 Emission [kg NH3/year] Difference [%] IT 626 30 Annual emission from storage in a pig production facility with 1000 animals using average Danish production methods and exposed to different European climatic conditions in the years 2007 and 2010 – important for emission ceilings … ACCENT-plus Symposium, Urbino 2013 The climate ”penalty” on NH3 emissions (standard Danish storage moved to other locations). 2087 relative to 2007 ACCENT-plus Symposium, Urbino 2013 2087 relative to 2010 Conclusions and outlook (1): • Today – often one national emission factor is used (for several year). This[6] study shows: • Emissions can vary with 20% by changing geographical location within a country due to overall variations in climate. Largest uncertainties are seen for large countries like UK, Germany and France. • Warmer years give higher NH3 emissions than colder years. Annual variations in overall climate can at specific locations cause uncertainties in the range of 20%. • Climate change will in general increase the emissions with 0-40%, in central to northern Europe – so yes the increase in emissions might hinder mitigations effects…. • The “climate penalty” has political implications for international regulation both now and in the future – how should we define and evaluate emissions ceilings and should “warmer” countries be allowed to emit more …? [6]The effect of climate and climate change on ammonia emissions in Europe Skjøth and Geels (2013) Atmos. Chem. Phys., 13, 117–128. ACCENT-plus Symposium, Urbino 2013 Conclusions and outlook (2): Possible way to include this in models: include dynamical calculations of the ammonia emissions. The dynamic NH3 model will be part of a proposed architecture for handling the climate-dependence of NH3 fluxes in models. On-going work in the ECLAIRE project. Described in the paper: Towards a climate-dependent paradigm of ammonia emission and deposition, By Sutton et al., Phil. Trans. Royal Society B vol. 368 no. 1621, 2013. ACCENT-plus Symposium, Urbino 2013 Thank you for your attention! - and contact us if you would like to get the code. Acknowledgements: ECLAIRE (FP7), ECOCLIM (Dan. Res. Council) and VKR-foundation Contacts: Carsten Ambelas Skjøth ([email protected]) ACCENT-plus Symposium, Urbino 2013 & Camilla Geels ([email protected])