* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Update on the NSA SNP project - National Sunflower Association
Human genome wikipedia , lookup
Polymorphism (biology) wikipedia , lookup
History of genetic engineering wikipedia , lookup
Metagenomics wikipedia , lookup
Designer baby wikipedia , lookup
Genome evolution wikipedia , lookup
Genome editing wikipedia , lookup
Public health genomics wikipedia , lookup
SNP genotyping wikipedia , lookup
Population genetics wikipedia , lookup
Human genetic variation wikipedia , lookup
Pathogenomics wikipedia , lookup
Genomic library wikipedia , lookup
Genome-wide association study wikipedia , lookup
Microevolution wikipedia , lookup
Molecular Inversion Probe wikipedia , lookup
Group selection wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Selective breeding wikipedia , lookup
Update on the NSA SNP project Dr. Venkatramana Pedagaraju – Molecular Breeding and Genomics Technology Manager Dr. Brent Hulke -- Research Geneticist NSA Sunflower Chip Idenifyed SNPs/InDels # Single Bead Assay Fixed variants 8313 6323 > 1SNP/contigs 5361 2072 RAD clustering to common EST 1167 430 Het variants 1557 1175 Total 16398 10000 Categories Synthesis failure Final set -1277 8723 Sunflower Genotyping Panel Diversity Panel Mapping Panel HA89 x RHA464 Mycogen NuFlower 1134 samples Advanta Genosys F1 Self Seeds 2000 CHS USDA 141, F2 lines genotyped 24x1 HD NSA Bead Chip A1 well: Reproducibility controls(3 unique lines selected from sequencing panel) A12 well: heterozygous controls (F1 hybrids) Infinium Work Flow Data Analysis using Genome Studio Software Cartesian Plot Polar Plot AA AB BB Call region Example of a good SNP Challenges Posed due to Deletions, Nearby Polymorphisms & Paraolog sequences Creating Project Specific Cluster Files Improved call rates All Samples Specific project Performance of SNP markers across various Diversity Panels 8400 8200 8000 # Marker Loci 7800 7600 7400 7200 7000 6800 6600 6400 6200 Projects Combined Specific Projects Reproducibility Reproducibility is based on the replicate pairs identified in sample manifest. The metric for reproducibility is calculated based on number of matching allele calls. Marker displayed 99.54% reproducibility. Mendelian Consistency Mendelian Consistency is based on the trios identified in sample manifest. The metric is calculated based on the number of matching genotypes (Mendelian Inheritance) between a child and each of its parents Summary NSA member Status Advanta USDA(Brent) USDA(Lili) Seeds2000 Genosys CHS Mycogen NuFlower May Agro Reported Reported Completed Reported Completed Reported Reported Data analysis in progress DNA isolated Conclusions • Out of total 16398 SNP identified, a subset of 8723 SNP were successfully validated across wide range of sunflower breeding lines. • Deletions, nearby polymorphism and presences of paralog sequences cause the locus success rate to vary among different breeding lines. • About 91% of SNPs were successfully scored in the sunflower diversity panel and linkage mapping population. • Approximately 5500 polymorphic loci were identify in the USDA bi-parental mapping population Future Directions — Develop a SNP based genetic map using genotypic data derived from USDA mapping population (HA89 x RHA464). —Constitute a standard panel of 384 sunflower SNP markers for routine usage across range of breeding projects(diversity analysis, genome selection, qtl mapping, trait introgression programs), based on below criteria: • Highly polymorphic & informative in any panel of sunflower germplasm(MAF>0.05) • Uniformly distributed on sunflower genome • Easily scorable on genome studio and produce automatic genotypic calls Future Prospects with SNPs 1. Mapping of SNPs to linkage groups defined by the SSR map 2. Development of a 384 marker suite for background selection in trait capture and genomic selection 3. Development of a suite of trait specific markers (may be included in the 384) 4. Genomic selection concept and practice Trait specific markers • Obtained two ways: – Association mapping with Phase II germplasm from all companies and USDA • Use existing inbred lines to find markers for traits • Strong possibility for IMISUN, SURES, HO, Pl6, Pl8, R-gene, recessive branching, and confection traits – Two parent mapping • Will happen for RHA 464 rust gene and Plarg gene as part of Lili’s mapping • Other traits, like other rust, vert resistance will need to be started new or translated from existing populations with prior SSR data Trait specific markers • Markers from any type of discovery method can be put together on a Bead Express assay, which is either part of the 384 Bead with random markers for genomic and background selection, or will stand on its own (48 Bead?) Genomic Selection • Using a moderate set of markers (384) to statistically associate with previous breeding data, to provide a way to make early selections before you have field info • Instead of just field measurement of traits, you can preselect lines based on marker data, and put only the “best” to field testing Genomic Selection • What is the ideal use of this to a breeder? – Take information from your own yield trials and apply it to new breeding lines – Standard set of random markers (like a 384 SNP bead) that are equally distributed over genome (divides genome into “blocks” or “bins”) – Only marker-assisted system with “pipeline” characteristics like a breeding program Conceptual bins for a chromosome, vertical bars as SNPs Genomic Selection – “training” • Breeder has a population that has good potential to produce exceptional lines • Data is collected on existing breeding lines for a quantitative trait over many locations (yield, oil) • A moderately sized marker set (384) is regressed statistically against the data • Markers are random effects – Marker significance is not determined individually, but as the full set of markers together – All markers are included in the selection model, however, each has a different weighting (importance) for selection (called Estimated Breeding Values) Genomic Selection – “selection” Data from previous YT with EBVs calculated for SNPs Very narrow based population for short term improvement and rapid inbred extraction Pick the most likely plants to have the phenotype of interest by selecting the plants with the best marker profile Elite x Elite cross F1 plant x F2 plants (large number, >100) Analyze with OPA as seedlings Select top 30% x Simple and straightforward F3 Alternatively, advance large number of lines by SSD to F4 or F5 and analyze with SNPs to fix genes and improve predictions. x … Testcross to tester lines, and evaluate in field x Finished inbred Commercial hybrid development Data from YT used to “tweak” model for next gen. Where is GS best used? • Excellent technique if you want to maximize selection accuracy and rate of genetic gain on a pop. by pop. basis. – Inference space is the population(s) of interest – Different populations have different gene structure, thus different EBVs for each bin in each population will improve gain from selection • Excellent technique if data is routinely generated for the trait of interest (e.g. yield data will always be generated in plant breeding) Time course for Genomic Selection 1. Assemble prior information – yield trials, special trait trials, on all lines tested the last few years 2. Get these same lines genotyped with 384 markers of equal genome distribution 3. “Train” your model and find the value of each marker 4. Take your newest germplasm, genotype 5. Use markers to assess which are the most likely lines to be release, and do field testing Thanks for your support!