Download Cellular_respiration_ppt

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Magnesium in biology wikipedia , lookup

Luciferase wikipedia , lookup

Ketosis wikipedia , lookup

Biosynthesis wikipedia , lookup

Fatty acid synthesis wikipedia , lookup

Metalloprotein wikipedia , lookup

Butyric acid wikipedia , lookup

Basal metabolic rate wikipedia , lookup

Fatty acid metabolism wikipedia , lookup

Glucose wikipedia , lookup

Nicotinamide adenine dinucleotide wikipedia , lookup

Thylakoid wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup

Photosynthesis wikipedia , lookup

Light-dependent reactions wikipedia , lookup

Mitochondrion wikipedia , lookup

Electron transport chain wikipedia , lookup

Microbial metabolism wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

Metabolism wikipedia , lookup

Biochemistry wikipedia , lookup

Adenosine triphosphate wikipedia , lookup

Glycolysis wikipedia , lookup

Oxidative phosphorylation wikipedia , lookup

Citric acid cycle wikipedia , lookup

Transcript
Mav Mark
1
Photosynthesis Review




Plants produce Oxygen (O2) and Glucose
(C6H12O6)
Light (dependent) reaction: Make O2 by
splitting H2O
Calvin Cycle (light independent) reaction:
make glucose (C6H12O6) from CO2 and H
ions
6CO2 + 6H2O + light energy  C6H12O6 +
6O2
Cellular Respiration
3
Respiration/Photosynthesis










You take the Glucose, swallow it down
C6H12O6 is in town
You need some O2, that’s oxygen
So the respiration party can begin
Now do the flip side, girl just switch it
You take some water and then you mix it
With some CO2 and see to your surprise
This photosynthesis thing ain’t no lie
And I was like H2- H2- H2O just CO2 & H2O
We’ll make some oxygen that’s O and all the sugar is
mine
4
Cellular Respiration

A catabolic, exergonic, oxygen (O2) requiring
process that uses energy extracted from
macromolecules (glucose) to produce energy
(ATP) and water (H2O).
C6H12O6 + 6O2  6CO2 + 6H2O + energy
glucose
ATP
5
Question:

In what kinds organisms does cellular
respiration take place?
6
Plants and Animals


Plants - Autotrophs: self-producers.
Animals - Heterotrophs: consumers.
7
Mitochondria

Organelle where cellular respiration takes
place.
Outer
membrane
Inner
membrane space
Matrix
Cristae
Inner
membrane
8
Redox Reaction


Transfer of one or more electrons from
one reactant to another.
Two types:
1. Oxidation
2. Reduction
9
Oxidation Reaction

The loss of electrons from a substance.

Or the gain of oxygen.
Oxidation
C6H12O6 + 6O2 6CO2 + 6H2O +
energy
glucose
ATP
10
Reduction Reaction


The gain of electrons to a
substance.
Or the loss of oxygen.
Reduction
C6H12O6 + 6O2 
glucose
6CO2 + 6H2O + energy
ATP
11
Redox Reactions

In Cellular Respiration



Glucose is oxidized to Carbon Dioxide
Oxygen is reduced to Water
In Photosynthesis


Carbon Dioxide is reduced to Glucose
Water is oxidized to Oxygen
12
Aerobic Respiration


Requires Oxygen (must be breathing!)
Steps
1.
2.
3.
Glycolysis (cytoplasm)
Kreb’s Cycle (mitochondria)
Electron Transport Chain (mitochondria)
Anaerobic Respiration

1.
2.
3.
Anaerobic=without oxygen
Glycolysis
Lactic Acid Fermentation: Animals
Alcoholic Fermentation: Plants/Yeast
(fungi)
Breakdown of Cellular
Respiration

Four main parts (reactions).
1. Glycolysis (splitting of sugar)
a. cytosol, just outside of mitochondria.
2. Grooming Phase
a. migration from cytosol to matrix.
15
Breakdown of Cellular
Respiration
3. Krebs Cycle (Citric Acid Cycle)
a. mitochondrial matrix
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
a. Also called Chemiosmosis
b. inner mitochondrial membrane.
16
1. Glycolysis


Occurs in the cytosol just outside of
mitochondria.
Two phases (10 steps):
A. Energy investment phase
a. Preparatory phase (first 5 steps).
B. Energy yielding phase
a. Energy payoff phase (second 5
steps).
17
1. Glycolysis
A. Energy Investment Phase:
Glucose (6C)
2ATP
C-C-C-C-C-C
2 ATP - used
0 ATP - produced
0 NADH - produced
2ADP + P
Glyceraldehyde phosphate (2 - 3C)
(G3P or GAP)
C-C-C
C-C-C
18
1. Glycolysis
B. Energy Yielding Phase
Glyceraldehyde phosphate (2 - 3C)
(G3P or GAP)
4ADP + P
4ATP
GAP
GAP
C-C-C C-C-C
0 ATP - used
4 ATP - produced
2 NADH - produced
Pyruvate (2 - 3C)
(PYR)
C-C-C C-C-C
(PYR) (PYR)
19
1. Glycolysis

Total Net Yield
2 - 3C-Pyruvate (PYR)
2 - ATP (Substrate-level
Phosphorylation)
2 - NADH
20
Substrate-Level
Phosphorylation

ATP is formed when an enzyme transfers a
phosphate group from a substrate to
ADP.
Enzyme
Example:
PEP to PYR
Substrate
(PEP)
Product
(Pyruvate)
OC=O
C-OCH2
OC=O
C=O
CH2
P
P
P
Adenosine
ADP
P P
P
Adenosine
ATP
21
Fermentation



Occurs in cytosol when “NO Oxygen” is
present (called anaerobic).
Remember: glycolysis is part of
fermentation.
Two Types:
1. Alcohol Fermentation
2. Lactic Acid Fermentation
22
Alcohol Fermentation

C
C
C
C
C
C
Plants and Fungi
2ADP
+2 P
beer and wine
2ATP
2NADH
C
C
C
Glycolysis
2 NAD+

2NADH
2 Pyruvic
acid
glucose
copyright cmassengale
2 NAD+
C
C
2 Ethanol
2CO2
released
23
Alcohol Fermentation

End Products: Alcohol fermentation
2 - ATP (substrate-level phosphorylation)
2 - CO2
2 - Ethanol’s
24
Lactic Acid Fermentation

Animals (pain in muscle after a workout).
C
C
C
C
C
C
2ADP
+2 P
2ATP
2NADH
C
C
C
Glycolysis
2 NAD+
2NADH
2 Pyruvic
acid
2 NAD+
C
C
C
2 Lactic
acid
Glucose
25
Lactic Acid Fermentation

End Products: Lactic acid fermentation
2 - ATP (substrate-level phosphorylation)
2 - Lactic Acids
26
Four Corners
27
2. Grooming Phase


Occurs when Oxygen is present (aerobic).
2 Pyruvate (3C) molecules are transported
through the mitochondria membrane to the
matrix and is converted to 2 Acetyl CoA (2C)
molecules.
Cytosol
2 CO2
C
C
C
Matrix
C-C
2 Pyruvate
2 NAD+
copyright cmassengale
2NADH
2 Acetyl CoA
28
2. Grooming Phase

End Products: grooming phase
2 - NADH
2 - CO2
2- Acetyl CoA (2C)
copyright cmassengale
29
3. Krebs Cycle (Citric Acid Cycle)



Location: mitochondrial matrix.
Acetyl CoA (2C) bonds to Oxalacetic acid
(4C - OAA) to make Citrate (6C).
It takes 2 turns of the krebs cycle to
oxidize 1 glucose molecule.
Mitochondrial
Matrix
30
3. Krebs Cycle (Citric Acid Cycle)
1 Acetyl CoA (2C)
OAA (4C)
FADH2
Citrate (6C)
Krebs
Cycle
2 CO2
(one turn)
3 NAD+
FAD
3 NADH
ATP
ADP + P
31
3. Krebs Cycle (Citric Acid Cycle)
2 Acetyl CoA (2C)
Citrate (6C)
OAA (4C)
2 FADH2
Krebs
Cycle
4 CO2
(two turns)
6 NAD+
2 FAD
6 NADH
2 ATP
2 ADP +
P
32
3. Krebs Cycle (Citric Acid Cycle)

Total net yield (2 turns of krebs
cycle)
1. 2 - ATP (substrate-level
phosphorylation)
2. 6 - NADH
3. 2 - FADH2
4. 4 - CO2
33
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
(Chemiosmosis)



Location: inner mitochondrial membrane.
Uses ETC (cytochrome proteins) and ATP
Synthase (enzyme) to make ATP.
ETC pumps H+ (protons) across innermembrane
(lowers pH in innermembrane space).
Inner
Mitochondrial
Membrane
34
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
(Chemiosmosis)




The H+ then move via diffusion (Proton
Motive Force) through ATP Synthase to make
ATP.
All NADH and FADH2 converted to ATP during
this stage of cellular respiration.
Each NADH converts to 3 ATP.
Each FADH2 converts to 2 ATP (enters the ETC
at a lower level than NADH).
35
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
(Chemiosmosis)
Outer
membrane
Inner
membrane space
Matrix
Cristae
Inner
membrane
36
4. ETC and Oxidative Phosphorylation
(Chemiosmosis for NADH)
higher H+
concentration
Intermembrane Space
1H+
E
2H+
3H+
T
C
NAD+
(Proton Pumping)
Matrix
ATP
Synthas
e
Inner
Mitochondrial
Membrane
O2 H O
2
2H+ + 1/2
NADH
+ H+
H+
ADP + P
H+
ATP
lower H+
concentration
37
4. ETC and Oxidative Phosphorylation
(Chemiosmosis for FADH2)
higher H+
concentration
Intermembrane Space
1H+
E
T
FADH2
+ H+
FAD+
(Proton Pumping)
Matrix
2H+
C
2H+ +
1/2O2
H+
ATP
Synthas
e
Inner
Mitochondrial
Membrane
H2O
ADP + P
H+
ATP
lower H+
concentration
38
TOTAL ATP YIELD
1. 04 ATP - substrate-level
phosphorylation
2. 34 ATP - ETC & oxidative
phosphorylation
38 ATP - TOTAL YIELD
ATP
copyright cmassengale
39
Eukaryotes
(Have Membranes)
Total ATP Yield
02 ATP - glycolysis (substrate-level phosphorylation)
04 ATP - converted from 2 NADH - glycolysis
06 ATP - converted from 2 NADH - grooming phase
02 ATP - Krebs cycle (substrate-level phosphorylation)
18 ATP - converted from 6 NADH - Krebs cycle
04 ATP - converted from 2 FADH2 - Krebs cycle
36 ATP - TOTAL

40
Maximum ATP Yield for Cellular
Respiration (Eukaryotes)
Glucose
Cytosol
Glycolysis
2 Acetyl CoA
2 Pyruvate
Mitochondria
Krebs
Cycle
2NADH
2 ATP
6NADH
2FADH2
(substrate-level
phosphorylation)
2NADH
ETC and Oxidative
Phosphorylation
2 ATP
(substrate-level
phosphorylation)
2ATP
4ATP 6ATP
18ATP
4ATP
36 ATP (maximum per glucose)
2ATP
41
Prokaryotes
(Lack Membranes)
Total ATP Yield
02 ATP - glycolysis (substrate-level phosphorylation)
06 ATP - converted from 2 NADH - glycolysis
06 ATP - converted from 2 NADH - grooming phase
02 ATP - Krebs cycle (substrate-level phosphorylation)
18 ATP - converted from 6 NADH - Krebs cycle
04 ATP - converted from 2 FADH2 - Krebs cycle
38 ATP - TOTAL

42
Question:

In addition to glucose, what other
various food molecules are use in
Cellular Respiration?
43
Catabolism of Various
Food Molecules

Other organic molecules used for fuel.
1. Carbohydrates: polysaccharides
2. Fats: glycerol’s and fatty acids
3. Proteins: amino acids
44
45