Download The P53 pathway and metabolism: implications in tissue

Document related concepts

Behavioral epigenetics wikipedia , lookup

Microevolution wikipedia , lookup

DNA damage theory of aging wikipedia , lookup

Epigenetics of diabetes Type 2 wikipedia , lookup

Epigenetics in stem-cell differentiation wikipedia , lookup

Genome (book) wikipedia , lookup

Point mutation wikipedia , lookup

Non-coding RNA wikipedia , lookup

Oncogenomics wikipedia , lookup

Polycomb Group Proteins and Cancer wikipedia , lookup

Metabolic network modelling wikipedia , lookup

Cancer epigenetics wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Mir-92 microRNA precursor family wikipedia , lookup

Telomere wikipedia , lookup

NEDD9 wikipedia , lookup

Epigenetic clock wikipedia , lookup

P53 wikipedia , lookup

Transcript
Laurent Le Cam
(Institut de Recherche en Cancérologie de Montpellier)
The P53 pathway and metabolism: implications in
tissue homeostasis, aging and carcinogenesis
WHY DO WE AGE AND GET CANCER?
ARE THESE 2 PROCESSES
INTRINSICALLY LINKED?
Many stresses leads to cellular senescence
Many stresses leads to cellular senescence
Replicative senescence
Replicative senescence
Telomere shortening triggers DDR
Many stresses lead to cellular senescence
Oncogene induced senescence
Many stresses lead to cellular senescence
Stress induced senescence / premature senescence
Oncogene induced senescence
Definition and features of cellular senescence
Pre-Senescent primary fibroblastsSenescent primary fibroblasts
Changes associated with cellular senescence:
Permanent cell cycle arrest
Flat morphology, vacuolized cytoplasm, condensed chromatin (SAHF)
SA b-Gal positive (lysosomal changes)
Senescent markers (p16, p15, ARF, PML, uPAI1)
Secretory phenotype (pro-inflammatory chemokines, IGFBP,…)
Changes in metabolism, DNA methylation ?????
MOLECULAR PATHWAYS INVOLVED IN SENESCENCE
ARE THESE 2 PROCESSES INTRINSICALLY LINKED?
DO THEY INVOLVE COMMON MOLECULAR CIRCUITRIES?
RB
p53
E2F
DP
The p53 tumor suppressor is a major effector of
cellular stress responses
Telomere attrition
Metabolic
stress
DNA damage
Oncogenic
stress
Hypoxia
Mitotic defects
Ribosomal stress
Replication defects
ROS
p53
p53
p53
p53
p53
p53 TARGET GENES
The p53 tumor suppressor is a major effector of
cellular stress responses
Telomere attrition
Metabolic
stress
Oncogenic
stress
DNA damage
Hypoxia
Mitotic defects
Ribosomal stress
Replication defects
ROS
p53
p53
p53
P21, Gadd45,
cyclin G1
proliferation
PAI1, PML, ME1 …
senescence
NOXA,Bax,
PUMA….
Apoptosis
p53
p53
p53 is maintained inactive in unstressed cells
by the Mdm2 oncoprotein
Mdm2
UB
p53
UB
19S
26S Proteasome
UB
UB
p53 and Mdm2 are involved in a
negative feed back loop
Mdm2
UB
UB
UB
Acute stress response
p53
UB
p53
19S
26S Proteasome
p53
p53
p53
p53
Mdm2
The Bmi1-ARF-p53 PATHWAY: a key regulatory pathway
implicated in carcinogenesis
Bmi1
Bmi
1
Arf
ARF
MDM2/MdmX
p53
p53
Mdm2
The Bmi1-ARF-p53 PATHWAY: a key regulatory pathway
implicated in carcinogenesis
Bmi1
Oncogene
Bmi
1
Arf
ARF
Oncogene
p53
Tumor suppressor gene
p53
Tumor suppressor gene
MDM2/MdmX
Mdm2
ALTERATIONS OF THE p53 PATHWAY
DURING TUMORIGENESIS
Amplification, viral insertion
Bmi1
(medulloblastomas, lymphomas)
Deletion
ARF
Mutation
Methylation
Amplification
MDM2
p53
Mutation
Inactivation by viral
oncoproteins
(Li-Fraumeni Syndrome)
The E2F/RB pathway
THE POCKET PROTEIN FAMILY
pRB, p130, p107
POCKET PROTEIN
THE E2F FAMILY
E2F1, E2F2, E2F3
E2F4, E2F5
E2F6, E2F7, E2F8
E2F
DP
TNTCC/GCG
C
THE DP FAMILY
DP 1
DP 2
ROLE OF THE RB PATHWAY IN CELL
CYCLE CONTROL
INK4
(p15, p16, p18, p19)
CIP/KIP
(p21, p27, p57)
cyclins E
cdk2
cyclins D
P
Cdk4/6
P
P
P
P
RB
RB
E2F DP
E2F DP
cyclin E
GO
G1
G1 / S
THE « RB » PATHWAY
p16
Oncogene
cyclin D
cdk4/6
pRB
Oncogene
Oncogene
Tumor suppressor gene
E2F
cyclin E
Tumor suppressor gene
GENETIC ALTERATIONS OF THE RB PATHWAY
DURING TUMORIGENESIS
Deletion
Mutation
Methylation
p16
Amplification
Overexpression
Deletion
Mutation
Inactivation by viral
oncoproteins
cycline D
cdk4/6
pRB
(retinoblastomas)
E2F
Amplification
Overexpression
Mutation
Binding to small inhibitors
(familial melanoma predisposition)
cycline E
Mutation (E2F-4)
Amplification (E2F-5)
CROSSTALKS BETWEEN THE RB AND p53 PATHWAYS
Bmi1
p16
cyclin D
cdk4/6
ARF
MDM2
pRB
p53
E2F
p21
cyclin E
The INK4a/ARF locus is at the crossroads of
the Rb and p53 pathways
p19ARF
Bmi1
Exon 1b
cyclin D
p16
Exon 1a
Exon 3
Exon 2
INK4a/ARF
locus
p16
Bmi1
cdk4/6
ARF
pRB
E2F
cyclins E, A
the « pRB pathway »
MDM2
p53
p21, Mdm2, PUMA….
the « p53 pathway »
The Rb and p53 pathways are key regulators of senescence
the « pRB pathway »
cyclin D
the « p53 pathway »
p16
Bmi1
cdk4/6
ARF
pRB
E2F
cyclins E, A
MDM2
p53
p21, Mdm2, PUMA….
SAHF: senescence associated heterochromatin foci
Senescent primary fibroblasts
HP1g / transcription shut off
H3K9 Tri-me+
Changes associated with cellular senescence:
Permanent cell cycle arrest
Flat morphology, vacuolized cytoplasm, condensed chromatin (SAHF)
SA b-Gal positive (lysosomal changes)
Senescent markers (p16, p15, ARF, PML, uPAI1)
Secretory phenotype (pro-inflammatory chemokines, IGFBP,…)
Changes in metabolism, DNA methylation ?????
Yet not all senescent cells are equal !!!!
Replicative senescence
Oncogene induced senescence
Different metabolic profiles !!!!
SASP: senescence associated secretory phenotype
Senescent primary fibroblasts
Il6, Il8, IGFBP7, PAI1…
Changes associated with cellular senescence:
Permanent cell cycle arrest
Flat morphology, vacuolized cytoplasm, condensed chromatin (SAHF)
SA b-Gal positive (lysosomal changes)
Senescent markers (p16, p15, ARF, PML, uPAI1)
Secretory phenotype (pro-inflammatory chemokines, IGFBP,…)
Changes in metabolism, DNA methylation ?????
Senescence: a potent barrier to tumorigenesis
Cell cycle arrest, inflammatory response
Cellule normale
Cellule sénescente
Cellule inflammatoire
chimiokines
cytokines
Tissu
norma
l
cellules subissant
des altérations
oncogéniques
Réponse anti-tumorale
Deregulation of the p53 and Rb pathways
is involved in tumorigenesis
p53
p53
RB
p53
p53
E2F
DP
Aging
TUMORIGENESIS
Senescence: a potent barrier to tumorigenesis
Senescence is not an in vitro artefact
Adenoma (benign tumor)
Adenocarcinoma (malignant tumor)
Senescence: a potent barrier to tumorigenesis
P53 ON/OFF in vivo models
p53 CONDITIONAL KNOCK-IN
Lox-P
p53
STOP
CONDITIONAL p53 shRNA
Lox-P
rtTA
shRNA p53
Senescence: a potent barrier to tumorigenesis
P53 ON/OFF in vivo models
p53 CONDITIONAL KNOCK-IN
Lox-P
p53
STOP
CONDITIONAL p53 shRNA
Lox-P
rtTA
shRNA p53
Senescence can participate in
organismal aging
p53
p53
RB
p53
p53
E2F
DP
Tumorigenesis
AGING
Cellule normale
Cellule sénescente
Tissu jeune
Cellule inflammatoire
chimiokines
cytokines
Tissu âgé
(altérations du renouvellement tissulaire)
Vieillissement
Senescent cells participate to
organismal aging
P16-suicide gene
(inducible KNOCK-IN)
p16
FKBP-Caspase 8
Senescent cells participate to
organismal aging
senescence
Stem cell potential
Tissue self renewal
Organismal aging
Senescent cells participate to
organismal aging
senescence
Stem cell potential
(Rapid regenerative tissues)
Tissue self renewal
Metabolic defects
(Slow regenerative tissues)
Tissue dysfunction
Organismal aging
Mitochondria play a critical role in cellular senescence
Cell metabolism and energy
Replicative
senescence and
oncogeneinduced
senescence
Reactive Oxygen Species
(DCFDA)
Decisions life and death:
membrane permability leads to
the release of proapoptotic
mediators
METABOLIC CHANGES IN SENESCENT CELLS
METABOLIC CHANGES IN SENESCENT CELLS
p53
Telomere attrition
p53
p53
p53 p53
p53 and metabolism
Glycolysis
Glutamine / Glutamate
metabolism
Pentose phosphate pathway
Glut 1,3,4
Gls2
HK2
Tigar
Malate metabolism
G6PD
Slc7A11
ME1,2,3
PGM
PI3K-AKT-mTor pathway
Srebp1
p53
Biosynthesis
PTEN
Lipid metabolism
AMPK
TSC2
Gamt
Polg
IGFBP3
Sco2
Tfam
Gpx1
Sestrins 1,2
REDOX
Lpin
Pgc1a
Aldh4
Sod2
OXPHOS / mitochondrial biogenesis
Cpt1c
Acad11
b-oxidation
P53 regulates metabolism
p53
p53
p53
The p53 tumor suppressor regulates autophagy
p53
p53
The Bmi1-ARF-p53 PATHWAY: a key regulatory pathway
implicated in carcinogenesis
Bmi1
Bmi
1
Arf
ARF
MDM2/MdmX
p53
p53
Mdm2
The p53 pathway and metabolism
Pentose phosphate pathway
Glycolysis
Glutamine / Glutamate
metabolism
E4F1 p53
p53
Glut 1,3,4
p53 Mdm2
Tigar
Dlat, Dld, Mpc1
Malate metabolism
Gls2
Slc7A11
p53
PI3K-AKT-mTor pathway
E4F1 p53
ME1,2,3
Pten
Ampk1
Tsc2
Igfbp3
Foxo3a
InsR
E4F1
Phgdh
Psat
E4F1 p53
Srebp1
Biosynthesis
Scd1
Mdm2
Serine metabolism
p53 Mdm2
p53
Lipid metabolism
p53
Gamt
Lpin
Psph
Shmt
REDOX
p53 Mdm2
Cpt1c
E4F1 p53
Gpx1
Sestrins 1,2
Aldh4
Sod2
Sco2
Tfam
Acad11
Pgc1a/b
Ndufs5
OXPHOS / mitochondrial biogenesis
b-oxidation
WHY DO WE AGE AND GET CANCER?
ARE THESE 2 PROCESSES
INTRINSICALLY LINKED?
p53
RB
The “antagonistic pleiotropy” theory:
What is good early in life might be
deleterious later and promote aging
p53 in aging: a puzzling question
WT
P53 Tg
Increased p53 activity leads to premature aging
phenotypes
p53 (D exons 1-6)
P53 mutant mice that display
early ageing associated
phenotypes
(Tyner
et al., 2002 Nature)
p53 in aging: a puzzling question
Extra-copies of the p53 and/or Arf loci increases lifespan
WT
P53/Arf Tg (super p53 + ARF, BAC transgenic strategy)
p53 in aging: dosage matters !!!
P53-mediated regulation of redox
potential: implication in aging