Download CP_Chromosome 231111_EN

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Amitosis wikipedia , lookup

Cell nucleus wikipedia , lookup

Cellular differentiation wikipedia , lookup

Mitosis wikipedia , lookup

Cell growth wikipedia , lookup

Biochemical switches in the cell cycle wikipedia , lookup

Transcription factor wikipedia , lookup

JADE1 wikipedia , lookup

List of types of proteins wikipedia , lookup

Cell cycle wikipedia , lookup

Transcriptional regulation wikipedia , lookup

Transcript
NATIONAL PRESS RELEASE | PARIS | 8 DECEMBER 2011
Learning more about chromosome fragility
Why are some chromosomal regions particularly susceptible to breakage? Finding the
answer to this question is crucial because this fragility is a factor in tumour
development. A team from the Institute of Genetics and Molecular & Cellular Biology
(CNRS/Inserm/University of Strasbourg) has just solved part of the mystery. Laszlo Tora
and his colleagues have discovered that breakage in the longest human genes is
caused by a phenomenon that, until now, was thought unlikely to occur in mammalian
cells: interference between two key genetic processes, DNA transcription1 and
replication2. This research, published in the journal Molecular Cell on 23 December
2011, could eventually lead to novel strategies for fighting tumours.
Laszlo Tora and his team began by studying the transcription of very large human genes (more than 800
3
kilobases ) that are known to exhibit DNA breaks called ‘common fragile sites’. They started out on the
assumption that, as transcription of these very large genes takes an extremely long time, the transcription
process could be a factor in the appearance of fragile sites.
The researchers used flow cytometry to put this assumption to the test. The use of this technology allowed
4
them to sort cells according to the stage they had reached in the cell cycle – cells in the G1 phase (gene
transcription and cell growth), S phase (DNA replication), G2 phase (growth and preparation for cell division)
and M phase (cell division). It emerged from this analysis that the transcription of very large genes took far
longer than one cell cycle and was not completed until the beginning of the next cycle, in the G1 or S phase.
This initial result is surprising for, until now, it had been assumed that gene transcription in mammals
occurred within a single cell cycle, mostly during the G1 phase.
As replication takes place during the S phase, the research team suspected that breakage in very large
mammalian genes could be due to interference between transcription and replication. They therefore
focused on replication in these genes. It was found that replication in fragile site regions occurs at the end of
the S phase, while transcription is still in progress in the same regions! This discovery has challenged current
ideas in genetics. Until this study, it was generally believed that DNA transcription and replication complexes
could not collide in mammals.
To explore this phenomenon further, the team then tried to discover what it was exactly that could weaken
DNA in the event of replication and transcription collision. They discovered the presence of lasting loop
structures caused by DNA hybridising with the RNA molecule produced during transcription. It is these
DNA/RNA loops that would appear to destabilise DNA to such an extent as to cause breakage in the event
of stress.
1
Process through which DNA is copied into RNA. The RNA is then ‘translated’ into proteins to allow the cell to
function.
2
Process allowing DNA to split before cell division.
3
DNA is measured in kilobases (1 kb = 1000 DNA base pairs).
4
The four cell cycle phases: G1 (gene transcription and cell growth), S (DNA replication), G2 (growth and preparation
for cell division) and M (division).
This crucial discovery opens up new prospects for medical research, for these loops can be seen as possible
targets for reducing genomic instability and the development of tumours.
Left: chromosomes with no breaks: the chromosomes are perfectly symmetrical.
Right: chromosomes with breaks leading to chromosomal rearrangements.
© Anne Helmrich
Bibliography
Collisions between replication and transcription complexes cause common fragile site instability at
the longest human genes. Anne Helmrich, Monica Ballarino and Laszlo Tora. Molecular Cell. 23 December
2011.
Contacts
CNRS research contact l Laszlo Tora l T +33 (0)3 88 65 34 44 l [email protected]
CNRS press contact l Priscilla Dacher l T +33 (0)1 44 96 46 06 l [email protected]