* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Answers to quiz 3:
Copy-number variation wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
History of genetic engineering wikipedia , lookup
Quantitative trait locus wikipedia , lookup
Gene nomenclature wikipedia , lookup
Saethre–Chotzen syndrome wikipedia , lookup
Minimal genome wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Ridge (biology) wikipedia , lookup
Point mutation wikipedia , lookup
Polycomb Group Proteins and Cancer wikipedia , lookup
Gene desert wikipedia , lookup
Genome evolution wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Genomic imprinting wikipedia , lookup
Skewed X-inactivation wikipedia , lookup
Gene expression profiling wikipedia , lookup
Y chromosome wikipedia , lookup
Gene expression programming wikipedia , lookup
Designer baby wikipedia , lookup
Dominance (genetics) wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Genome (book) wikipedia , lookup
Neocentromere wikipedia , lookup
Answers to quiz 3: 1. Barr bodies are only seen in interphase nuclei and are correlated with the number of X chromosomes present in the karyotype. If it were a normal male, it would be zero; if it were a normal female, it would be one. There is also NO relationship between the number of Barr bodies formed and Down Syndrome- Down Syndrome is an autosomal trisomy, and Barr bodies are a result of X chromosome dosage compensation. Since the problem states we are examining Barr bodies in a metaphase cell, the answer would be none. Ans: (a) 2. M(AP[L)E.SU]G4R In this situation, since the breakage and fusions do not result in loss of gene activity at the break points, the loss of genetic material would be most detrimental to phenotype. Among the situations given, the first() is a paracentric inversion, the 2nd []is a pericentric inversion, and the third is a deletion, which would be the most serious. Ans. (c). 3. This is true, and is depicted in your textbook. Please see figure 14.14. 4. The cross is P: c bz wx sh d/c bz wx sh d x C Bz Wx Sh D/C Bz Wx Sh D F1: C Bz Wx Sh D/c bz wx sh d Backcross: C Bz Wx Sh D/c bz wx sh d x c bz wx sh d/c bz wx sh d 4. There are five genes that are segregating, so we would expect to see 25 or 32 different potential phenotypic classes. Ans: (e). The total number of progeny is ~1000. First classify the progeny as to where a crossover occurred for each type. Then, total the number of crossovers between each pair of genes, and calculate the observed map units. Sh-D 5. Notice that a reduction of map units, or crossing-over, is seen in two intervals. Results like this are suggestive of an inversion. The map distances between C and Bz and Sh and D are similar to what would be expected. The inversion most likely involves the Bz, Wx, and Sh genes. Further notice that all those instances in which crossing-over occurred in the proposed inverted region involved a double crossover. This is the expected pattern. Ans: none of the above (e). A number of possible classes are missing: four single-crossover classes resulting from crossing-over in the inverted region, eight double-crossover classes involving the inverted region and the non-inverted region, and triple crossovers and higher. The 10 classes detected were the only classes that were viable. The viable classes involved a single crossover outside the inverted region or a double crossover within the inverted region: Class 1: parental; increased- owing to non-viability of some crossovers Class 2: parental; increased- owing to non-viability of some crossovers Class 3: crossing-over between C and Bz; approximately expected frequency Class 4: crossing-over between C and Bz; approximately expected frequency Class 5: crossing-over between Sh and D; approximately expected frequency Class 6: crossing-over between Sh and D; approximately expected frequency Class 7: double crossover between C and Bz and between Sh and D;approximately expected frequency Class 8: double crossover between C and Bz and between A and D;approximately expected frequency Class 9: double crossover between Bz and Wx and between Wx and Sh;approximately expected frequency Class 10: double crossover between Bz and Wx and between Wx and Sh;approximately expected frequency 6. Micro-RNAs fulfill all these criteria- they are trans-acting, i.e. they are synthesized at one locus and then bind to other molecules, they are processed into single stranded RNAs that interact with RISC complexes, and some are derived from the introns of protein coding genes. Ans: (d) 7-8. To answer this problem, think about what would be expected in the situation where you had a monohybrid individual with only two sets of alleles, relative to an individual who was trisomic and would contain three sets of alleles. If we were carrying three copies of genes on the I chromosome, we would NOT expect to see a 3:1 ratio for the genes that were segregating. For example, suppose the Y gene were NOT on the I chromosome. If not on I, the cross would be: Yy x Yy, or a 3:1 ratio of dominant to recessive phenotypes. This is the ratio we observe for the Y/y alleles, so this allelic pair cannot reside on chromosome I. Let us now examine allelic pair R/r. Suppose we had a trisomic plant that was RRr. In each parent, the gametes that would give rise to diploids would have a 2/3 chance of containing a dominant allele. We would expect the following ratios to be observed in diploid plants following self-fertilization: 2/3 R 4/9 RR 1/3 r 2/9 Rr 2/3R 2/9 Rr 1/3 r 1/9 rr 2/3 R 1/3 r 7. Or about a 9:1 ratio of dominant to recessive phenotype in the diploid plants. This is what is observed for trisomic I in the diploid Rr segregation pattern- therefore the R/r allelic pair must lie on chromosome B. This is what we see for the R/r gene pair in the I chromosome trisomic, so R lies on chromosome I. Ans: (d). 8. In examining the data set for the trisomic B parent, we see that all the segregation patterns, with the exception of the pattern for L/l, show a 3:1 ratio characteristic of monohybrids. The L/l pair shows a pattern characteristic of trisomy- the L/l allele pair is present on chromosome B. Ans: AaDdLLlYyRr. (c) 9-10. This is a deletion mapping problem. A series of overlapping deletions will reveal (uncover) a recessive phenotype if the recessive mutation on the homolog falls within the boundaries of the deletion: z+ x y z Pseudodominance: phenotype of deletion heterozygote is mutant (-) for x and y; wild type (+) for z Start with deletions that uncover the smallest intervals, and build from these: (d,f,h) (c,e) (f,g) ace (a,c) (a,c,d) dfh dhf hdf dace or daceb (a,b,c,e) gfhdaceb becadhfg 9. From comparing deletions 3 and 4, the c must be the middle gene in this three gene array. Ans. True (a). 10. A similar argument can be made by comparing mutation 2 to these mutations; the d gene must lie next to a to make dace. In comparing deletions 6 and 7 with this order, neither f nor d could be the middle gene in the (d,f,h) cluster. The gene order must therefore be: gfhdaceb or the inverse, becadhfg, since this procedure only places genes in their relative order- it can’t order them relative to a chromosome structure like the centromere. Ans. False (b).