* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture 4, Conservation Laws
Hidden variable theory wikipedia , lookup
Magnetic monopole wikipedia , lookup
Molecular Hamiltonian wikipedia , lookup
Quantum field theory wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Elementary particle wikipedia , lookup
Hydrogen atom wikipedia , lookup
Path integral formulation wikipedia , lookup
Dirac bracket wikipedia , lookup
Topological quantum field theory wikipedia , lookup
Canonical quantization wikipedia , lookup
Technicolor (physics) wikipedia , lookup
Scale invariance wikipedia , lookup
Renormalization wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Dirac equation wikipedia , lookup
Quantum chromodynamics wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Yang–Mills theory wikipedia , lookup
Renormalization group wikipedia , lookup
Higgs mechanism wikipedia , lookup
BRST quantization wikipedia , lookup
Gauge fixing wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Scalar field theory wikipedia , lookup
Gauge theory wikipedia , lookup
History of quantum field theory wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
P780.02 Spring 2003 L4 Richard Kass Conservation Laws When something doesn’t happen there is usually a reason! n \ pe- or p \ ne+ v or \ e Read: M&S Chapters 2, 4, and 5.1, That something is a conservation law ! A conserved quantity is related to a symmetry in the Lagrangian that describes the interaction. (“Noether’s Theorem”) A symmetry is associated with a transformation that leaves the Lagrangian invariant. time invariance leads to energy conservation translation invariance leads to linear momentum conservation rotational invariance leads to angular momentum conservation Familiar Conserved Quantities Strong EM Weak Quantity Comments energy sacred linear momentum ang. momentum Y Y Y Y Y Y Y Y Y sacred sacred P780.02 Spring 2003 L4 Other Conserved Quantities Quantity Strong EM Weak Baryon number Y Y Y Lepton number(s) Y Y Y top Y Y N strangeness Y Y N charm Y Y N bottom Y Y N Isospin Y N N Charge conjugation (C) Y Y N Parity (P) Y Y N CP or Time (T) Y Y y/n CPT Y Y Y G Parity Y N N Richard Kass Comments no p+ 0 no -e- Nobel 88, 94, 02 discovered 1995 discovered 1947 discovered 1974, Nobel 1976 discovered 1977 proton = neutron (mumd) particle anti-particle Nobel prize 1957 small No, Nobel prize 1980 sacred works for pions only Neutrino oscillations give first evidence of lepton # violation! These experiments were designed to look for baryon # violation!! Classic example of strangeness violation in a decay: p- (S=-1 S=0) Very subtle example of CP violation: expect: Kolong +0BUT Kolong +-(1 part in 103) P780.02 Spring 2003 L4 Some Reaction Examples Richard Kass Problem 2.1 (M&S page 43): a) Consider the reaction vu+p++n What force is involved here? Since neutrinos are involved, it must be WEAK interaction. Is this reaction allowed or forbidden? Consider quantities conserved by weak interaction: lepton #, baryon #, q, E, p, L, etc. muon lepton number of vu=1, +=-1 (particle Vs. anti-particle) Reaction not allowed! b) Consider the reaction ve+pe-+++p Must be weak interaction since neutrino is involved. conserves all weak interaction quantities Reaction is allowed c) Consider the reaction e-+++ (anti-ve) Must be weak interaction since neutrino is involved. conserves electron lepton #, but not baryon # (1 0) Reaction is not allowed d) Consider the reaction K+-+0+ (anti-v) Must be weak interaction since neutrino is involved. conserves all weak interaction (e.g. muon lepton #) quantities Reaction is allowed P780.02 Spring 2003 L4 More Reaction Examples Richard Kass Let’s consider the following reactions to see if they are allowed: K su a) K+p ++ b) K-p n c) K0+K su First we should figure out which forces are involved in the reaction. 0 K sd All three reactions involve only strongly interacting particles (no leptons) so it is natural to consider the strong interaction first. a) b) c) Not possible via strong interaction since strangeness is violated (1-1) Ok via strong interaction (e.g. strangeness –1-1) Not possible via strong interaction since strangeness is violated (1 0) If a reaction is possible through the strong force then it will happen that way! Next, consider if reactions a) and c) could occur through the electromagnetic interaction. Since there are no photons involved in this reaction (initial or final state) we can neglect EM. Also, EM conserves strangeness. Next, consider if reactions a) and c) could occur through the weak interaction. Here we must distinguish between interactions (collisions) as in a) and decays as in c). The probability of an interaction (e.g. a) involving only baryons and mesons occurring through the weak interactions is so small that we neglect it. Reaction c) is a decay. Many particles decay via the weak interaction through strangeness changing decays, so this can (and does) occur via the weak interaction. To summarize: a) Not possible via weak interaction c) OK via weak interaction Don’t even bother to consider Gravity! P780.02 Spring 2003 L4 Richard Kass Conserved Quantities and Symmetries Every conservation law corresponds to an invariance of the Hamiltonian (or Lagrangian) of the system under some transformation. We call these invariances symmetries. There are 2 types of transformations: continuous and discontinuous Continuous give additive conservation laws x x+dx or +d examples of conserved quantities: electric charge momentum baryon # Discontinuous give multiplicative conservation laws parity transformation: x, y, z (-x), (-y), (-z) charge conjugation (particleantiparticle): e- e+ examples of conserved quantities: parity (in strong and EM) charge conjugation (in strong and EM) parity and charge conjugation (strong, EM, almost always in weak) P780.02 Spring 2003 L4 Richard Kass Conserved Quantities and Symmetries Example of classical mechanics and momentum conservation. In general a system can be described by the following Hamiltonian: H=H(pi,qi,t) with pi=momentum coordinate, qi=space coordinate, t=time Consider the variation of H due to a translation qi only. 3 H 3 H H dH dqi dpi dt t i 1 qi i 1 pi For our example dpi=dt=0 so we have: 3 H dH dqi i 1 qi Using Hamilton’s canonical equations: qi H pi We can rewrite dH as: p i H qi with p i dpi dt 3 H dH dqi p i dqi i 1 qi i 1 3 If H is invariant under a translation (dq) then by definition we must have: 3 H 3 dH dqi p i dqi 0 q i 1 i 1 i This can only be true if: 3 d 3 p i 0 or i 1 pi 0 dt i 1 Thus each p component is constant in time and momentum is conserved. P780.02 Spring 2003 L4 Richard Kass Conserved Quantities and Quantum Mechanics In quantum mechanics quantities whose operators commute with the Hamiltonian are conserved. Recall: the expectation value of an operator Q is: Q *Qdx with ( x , t ) and Q Q( x , x , t ) How does <Q> change with time? d d * Q * Q Qdx Qdx * dx *Q dx dt dt t t t Recall Schrodinger’s equation: * i H and i * H t t H+= H*T= hermitian conjugate of H Substituting the Schrodinger equation into the time derivative of Q gives: d d 1 Q 1 Q *Qdx *H Qdx * dx *QHdx dt dt i t i Since H is hermitian (H+= H) we can rewrite the above as: d Q 1 Q * ( [Q, H ])dx dt t i So if Q/t=0 and [Q,H]=0 then <Q> is conserved. P780.02 Spring 2003 L4 Richard Kass Conservation of electric charge and gauge invariance Conservation of electric charge: SQi=SQf Evidence for conservation of electric charge: Consider reaction e-ve which violates charge conservation but not lepton number or any other quantum number. If the above transition occurs in nature then we should see x-rays from atomic transitions. The absence of such x-rays leads to the limit: te > 2x1022 years There is a connection between charge conservation, gauge invariance, and quantum field theory. Recall Maxwell’s Equations are invariant under a gauge transformation: vector potential : A A 1 scalar potential : c t A Lagrangian that is invariant under a transformation U=ei is said to be gauge invariant. There are two types of gauge transformations: local: =(x,t) global: =constant, independent of (x,t) Maxwell’s EQs are locally gauge invariant Conservation of electric charge is the result of global gauge invariance Photon is massless due to local gauge invariance P780.02 Spring 2003 L4 Richard Kass Gauge invariance, Group Theory, and Stuff Consider a transformation (U) that acts on a wavefunction (y): yUy Let U be a continuous transformation then U is of the form: U=ei is an operator. If is a hermitian operator (=*T) then U is a unitary transformation: U=ei U+=(ei)*T= e-i*T = e-i UU+= ei e-i =1 Note: U is not a hermitian operator since UU+ In the language of group theory is said to be the generator of U There are 4 properties that define a group: 1) closure: if A and B are members of the group then so is AB 2) identity: for all members of the set I exists such that IA=A 3) Inverse: the set must contain an inverse for every element in the set AA-1=I 4) Associativity: if A,B,C are members of the group then A(BC)=(AB)C If = (1, 2, 3,..) then the transformation is “Abelian” if: U(1)U(2) = U(2)U(1) i.e. the operators commute If the operators do not commute then the group is non-Abelian. The transformation with only one forms the unitary abelian group U(1) The Pauli (spin) matrices generate the non-Abelian group SU(2) 0 1 0 i 1 0 x y z 1 0 i 0 0 1 S= “special”= unit determinant U=unitary n=dimension (e.g.2) P780.02 Spring 2003 L4 Richard Kass Global Gauge Invariance and Charge Conservation The relativistic Lagrangian for a free electron is: L iy u u y myy c 1 This Lagrangian gives the Dirac equation: y is the electron field (a 4 component spinor) i u u y mcy 0 m is the electrons mass u= “gamma” matrices, four (u=0,1,2,3) 4x4 matrices that satisfy uv+ vu =2guv u= (0, 1, 2, 3)= (/t, /x, /y, /z) Let’s apply a global gauge transformation to L y ei y y ye i L iy u u y my y L iye i u u e i y mye i e i y L iye i e i u u y mye i e i y since λ is a constant L iy u u y m y y L By Noether’s Theorem there must be a conserved quantity associated with this symmetry! P780.02 Spring 2003 L4 The Dirac Equation on One Page Richard Kass The Dirac equation: i u u mc 0 1 2 3 i[ ] mc 0 t x y z 1 0 i 0 i 0 1 0 0 1 0 i[ 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 t 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 i 0 0 0 0 i 0 0 0 x 0 i 0 0 y 1 0 i 0 0 0 0 0 0 0 1 1 0 1 0 1 0 ] mc 0 0 0 z 0 0 0 0 1 0 0 0 0 1 0 i 0 0 0 0 0 0 0 1 0 A solution (one of 4, two with +E, two with -E) to the Dirac equation is: 1 0 cp z 2 exp[ (i / )( Et p r ] U exp[ (i / )( Et p r ] (| E | mc ) / c 2 E Mc c( p x ip y ) E Mc 2 The function U is a (two-component) SPINOR and satisfies the following equation: ( u pu mc)U 0 Spinors are most commonly used in physics to describe spin 1/2 objects. For example: 1 0 represents spin up ( /2) while represents spin down ( / 2) 0 1 Spinors also have the property that they change sign under a 3600 rotation! P780.02 Spring 2003 L4 Richard Kass Global Gauge Invariance and Charge Conservation We need to find the quantity that is conserved by our symmetry. In general if a Lagrangian density, L=L(, xu) with a field, is invariant under a transformation we have: L 0 L L xu xu Result from field theory i For our global gauge transformation we have: e (1 i ) (1 i ) i and i xu xu xu Plugging this result into the equation above we get (after some algebra…) L L L L L 0 ( xu xu xu xu ) xu The first term is zero by the Euler-Lagrange equation. The second term gives us a continuity equation. L xu E-L equation in 1D L d L ( )0 x dt x P780.02 Spring 2003 L4 Richard Kass Global Gauge Invariance and Charge Conservation The continuity equation is: J u L L i 0 xu xu x u xu xu L with J i xu u Result from quantum field theory Recall that in classical E&M the (charge/current) continuity equation has the form: J 0 t (J0, J1, J2, J3) =(, Jx, Jy, Jz) Also, recall that the Schrodinger equation give a conserved (probability) current: y 2 2 * i y Vy cy y and J ic[y*y (y* )y] t 2m If we use the Dirac Lagrangian in the above equation for L we find: Conserved quantity J u y u y This is just the relativistic electromagnetic current density for an electron. The electric charge is just the zeroth component of the 4-vector: 0 Q J dx Therefore, if there are no current sources or sinks (J=0) charge is conserved as: J u 0 xu J 0 0 t P780.02 Spring 2003 L4 Richard Kass Local Gauge Invariance and Physics Some consequences of local gauge invariance: a) For QED local gauge invariance implies that the photon is massless. b) In theories with local gauge invariance a conserved quantum number implies a long range field. e.g. electric and magnetic field However, there are other quantum numbers that are similar to electric charge (e.g. lepton number, baryon number) that don’t seem to have a long range force associated with them! Perhaps these are not exact symmetries! evidence for neutrino oscillation implies lepton number violation. c) Theories with local gauge invariance can be renormalizable, i.e. can use perturbation theory to calculate decay rates, cross sections, etc. Strong, Weak and EM theories are described by local gauge theories. U(1) local gauge invariance first discussed by Weyl in 1919 SU(2) local gauge invariance discussed by Yang&Mills in 1954 (electro-weak) ye it(x,t)y t is represented by the 2x2 Pauli matrices (non-Abelian) SU(3) local gauge invariance used to describe strong interaction (QCD) in 1970’s ye it(x,t)y t is represented by the 3x3 matrices of SU(3) (non-Abelian) P780.02 Spring 2003 L4 Richard Kass Local Gauge Invariance and QED Consider the case of local gauge invariance, =(x,t) with transformation: y e i ( x ,t ) y y ye i ( x ,t ) The relativistic Lagrangian for a free electron is NOT invariant under this transformation. L iy u u y myy c 1 The derivative in the Lagrangian introduces an extra term: y e i ( x ,t ) ye u i ( x ,t ) y [i( x, t )] u We can MAKE a Lagrangian that is locally gauge invariant by adding an extra piece to the free electron Lagrangian that will cancel the derivative term. We need to add a vector field Au which transforms under a gauge transformation as: AuAu+u(x,t) with (x,t)=-q(x,t) (for electron q=-|e|) The new, locally gauge invariant Lagrangian is: L iy u u y myy 1 uv F Fuv qy u yAu 16 P780.02 Spring 2003 L4 Richard Kass The Locally Gauge Invariance QED Lagrangian L iy u u y myy 1 uv F Fuv qy u yAu 16 Several important things to note about the above Lagrangian: 1) Au is the field associated with the photon. 2) The mass of the photon must be zero or else there would be a term in the Lagrangian of the form: mAuAu However, AuAu is not gauge invariant! 3) Fuv=uAv-vAu and represents the kinetic energy term of the photon. Au 4) The photon and electron interact via the last term in the Lagrangian. This is sometimes called a current interaction since: eu u qy u yA J u A Ju eIn order to do QED calculations we apply perturbation theory (via Feynman diagrams) to JuAu term. 5) The symmetry group involved here is unitary and has one parameter U(1)