Download Nutrisi & Pertumbuhan Mikrobia

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Protein wikipedia , lookup

Bioluminescence wikipedia , lookup

Amino acid synthesis wikipedia , lookup

Basal metabolic rate wikipedia , lookup

Digestion wikipedia , lookup

Biosynthesis wikipedia , lookup

Western blot wikipedia , lookup

Metalloprotein wikipedia , lookup

Thylakoid wikipedia , lookup

Enzyme wikipedia , lookup

Proteolysis wikipedia , lookup

Magnesium transporter wikipedia , lookup

Electron transport chain wikipedia , lookup

Cyanobacteria wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

Oxidative phosphorylation wikipedia , lookup

Photosynthesis wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

Light-dependent reactions wikipedia , lookup

Microbial metabolism wikipedia , lookup

Metabolism wikipedia , lookup

Biochemistry wikipedia , lookup

Transcript
Nutrisi & Metabolisme Mikrobia
Nutrisi dan Tipe Nutrisi Mikrobia
– Nutien mikrobia
– Komponen Nutrien Mikrobia
– Transportasi Nutrien
Microbial Nutrition and Metabolism
Nutrisi & Tipe Nutrisi Mikrobia
Nutrien: sumber energi & komponen sel
Nutrisi Mikrobia:
Tipe nutrisi mikrobia
Transportasi nutrient
Pertumbuhan populasi mikrobia:
Batch culture: fase pertumbuhan
Continuous culture: chemostat
Metode pengukuran pertumbuhan
Concepts
• Microorganisms require about 10 elements in large quantities,
in part because they are used to construct carbohydrates,
lipids, proteins, and nucleic acids. Several other elements are
needed in very small amount and are parts of enzymes and
cofactors.
• All microorganisms can be placed in one of a few nutritional
categories on the bases of their requirements for carbon,
energy and hydrogen atoms or electrons.
• Nutrient molecules frequently cannot cross selectively
permeable plasma membranes through passive diffusion.
They must be transported by one of three major mechanisms
involving the use of membrane carrier proteins.
Nutrient
requirements
Concepts:
Microorganisms require about ten elements in large
quantities, because they are used to construct
carbohydrates, lipids, proteins, and nucleic acids.
Several other elements are needed in very small
amounts and are parts of enzymes and cofactors.
Macronutrients
• 95% or more of cell dry weight is made up of a
few major elements: carbon, oxygen, hydrogen,
nitrogen, sulfur, phosphorus, potassium,
calcium, magnesium and iron.
• The first six ( C, H, O, N, P and S) are
components of carbohydrates, lipids, proteins
and nucleic acids
Nutrisi Mikrobia: komponen nutrien
Makroelemen:
 C, H, O, N, S, P: (gr/l)
 karbohidrat,
 lipid,
 protein
 asam nukleat
 Kebutuhan N, S dan P
 N: sintesis asam amino
 S: asam amino sistein dan metionin, vitamin (biotin dan
tiamin)
 P: asam nukleat, fosfolipid dan nukleotida (ATP)
Makroelemen
 K, Ca, Mg dan Fe: (mg/l)
K: aktivitas enzim dalam sintesis protein
Ca: resistensi panas pada endospora
Mg: ko-faktor berbagai enzim
Fe: penyusun sitokhrom dalam rantai
respirasi
Nutrisi Mikrobia: komponen nutrien
Mikroelemen (Trace elements): (μg/l)
Mn, Zn, Co, Mo, Ni dan Cu
Mn: membantu enzim dalam transfer gugus P
Zn: berperan dalam sisi aktif enzim pada E.
coli
Mo: berperan dalam fiksasi N
Co: komponen Vitamin B12
Trace Elements
Microbes require very small amounts of other
mineral elements, such as iron, copper,
molybdenum, and zinc; these are referred to as
trace elements. Most are essential for activity of
certain enzymes, usually as cofactors.
Growth Factors
(1)Amino acids
(2) Purines and pyrimidines,
(3) Vitamins
Amino acids for protein synthesis
Purines and pyrimidines for nucleic acid synthesis.
Vitamins are small organic molecules that usually make
up all or part enzyme cofactors, and only very small
amounts are required for growth.
Growth factor
Growth factor: Senyawa organik yang
diperlukan karena tidak dapat disintesis
oleh sel
Contoh:
• Asam amino
• Purin dan Pirimidin
• Vitamin: kofaktor bagi enzim
Nutritional types of microorganisms
Major nutritional
type
Sources of energy,
hydrogen/electrons,
and carbon
Representative
microorganisms
Photoautotroph
(Photolithotroph)
Light energy, inorganic
Algae, Purple and
hydrogen/electron(H/e-) donor, green bacteria,
CO2 carbon source
Cyanobacteria
Photoheterotroph
(Photoorganotroph)
Light energy, inorganic H/edonor,
Organic carbon source
Purple nonsulfur
bacteria,
Green sulfur bacteria
Chemoautotroph
(Chemolithotroph)
Chemical energy source
(inorganic), Inorganic H/edonor, CO2 carbon source
Sulfur-oxdizing
bacteria, Hydrogen
bacteria,
Nitrifying bacteria
Chemoheterotroph
(Chenoorganotroph)
Chemical energy source
(organic), Organic H/e- donor,
Organic carbon source
Most bacteria, fungi,
protozoa
Photoautotroph
Algae, Cyanobacteria
CO2 + H2O
Light + Chlorophyll
(CH2O) +O2
Purple and green bacteria
CO2 + 2H2S
Light + bacteriochlorophyll
(CH2O) + H2O + 2S
Photoheterotroph
Purple nonsulfur bacteria (Rhodospirillum)
CO2 + 2CH3CHOHCH3
+ H2O + 2CH3COCH3
Light + bacteriochlorophyll
(CH2O)
Properties of microbial photosynthetic systems
Property
Cyanobacteria Green and purple Purple nonsulfur
bacteria
bacteria
Photo - pigment Chlorophyll
Bcteriochlorophyll
Bcteriochlorophyll
O2 production
Yes
No
No
Electron donors
H2O
H2, H2S, S
H2, H2S, S
Carbon source
CO2
CO2
Organic / CO2
ATP
ATP
Primary
products of
energy
conversion
ATP + NADPH
Nutrisi Mikrobia: Tipe nutrisi mikrobia
Berdasarkan sumber karbon:
 Heterotrof: organik, e.g. glukosa
 Autotrof: anorganik, e.g. CO2
Berdasarkan sumber Energi:
 Fototrof: cahaya, e.g. cahaya matahari
 Khemotrof: reaksi kimiawi,e.g. biooksidasi-reduksi (org &
anorg)
Berdasarkan sumber donor elektron:
 Litotrof: anorganik e.g. H2O, H2S
 Organotrof: organik, e.g. glukosa
Nutrisi Mikrobia: Tipe nutrisi mikrobia
1. Foto-litotrofik autotrof :
Sianobakteria: Oscilatoria, Nostoc,Anabaena
Algae: Euglena, Chlamydomonas, Volvox
Purple sulphur bacteria: Ectothiorhodospira
Green sulphur bacteria: Chlorobium
Chloronema
Tipe nutrisi mikrobia
2. Foto-organotrofik heterotrof:
Purple non-sulphur bacteria:
Rhodospirilum, Rhodopseudomonas
Green non-sulphur bacteria:
Chloroflexus, Thermomicrobium
Tipe nutrisi mikrobia
3. Khemo-litotrofik autotrof:
Sulphur oxidizing bacteria: Thiobacillus,
Beggiatoa, Thiotrix
Hydrogen bacteria: Ralstonia,
Alcaligenes
Nitrifying bacteria: Nitrosomonas,
Nitrobacter, Nitrococcus
Iron oxidizing bacteria: Thiobacilus,
Gallionella
Tipe nutrisi mikrobia
4.Khemo-organotrofik heterotrof:
 Non-fotosynthetic bacteria: Escherichia, Bacillus,
Salmonella
 Archaea: Methanococcus, Halococcus
 Protozoa: Amoeba, Trypanosoma, Plasmodium
 Fungi: Penicillium, Rhizopus, Mucor, Aspergillus,
Saccharomyces
 Slime molds: Physarum
 Water molds: Pytophthora
Uptake of nutrients
Nutrient molecules frequently cannot cross
selectively permeable plasma membranes through
passive diffusion and must be transported by one
of three major mechanisms involving the use of
membrane carrier proteins.
Transport via membran
Membran transport
Transportasi Nutrien
1. Passive diffusion
2. Transport protein (uniport, simport,
antiport)
3. Facilitated diffusion
4. Active transport
5. Group translocation
6. Chelating transport
1. Phagocytosis – Protozoa
2. Permeability absorption – Most microorganisms
• Passive transport simple diffusion
• Facilitated diffusion
• Active transport
• Group translocation
Passive diffusion
Passive diffusion is the process in which molecules
move from a region of higher concentration to one
of lower concentration as a result of random thermal
agitation. A few substances, such as glycerol, can
cross the plasma membrane by passive diffusion.
Difusi & osmosis
Facilitated diffusion
The rate of diffusion across selectively permeable membranes
is greatly increased by the use of carrier proteins, sometimes
called permeases, which are embedded in the plasina
membrane. Since the diffusion process is aided by a carrier, it
is called facilitated diffusion. The rate of facilitated diffusion
increases with the concentratioti gradient much more rapidly
and at lower concentrations of the diffusing molecule than that
of passive diffusion
A model of facilitated diffusion
The membrane carrier can change
conformation after binding an
external molecule and
subsequently release the molecule
on the cell interior. It then returns
to the outward oriented position
and is ready to bind another solute
molecule.
Because there is no energy input, molecules
will continue to enter only as long as their
concentration is greater on the outside.
T4007.gif
Difusi terfasilitasi
Active transport
T4008.gif
Active transport is the transport of solute molecules
to higher concentrations, or against a concentration
gradient, with the use of metabolic energy input.
Transport aktif
Proton Pump
Group translocation
Group translocation
The best-known group translocation system is the
phosphoenolpyruvate: sugar phosphotransferase
system (PTS), which transports a variety of sugars
into procaryotic cells while Simultaneously
phosphorylating them using phosphoenolpyruvate
(PEP) as the phosphate donor.
PEP + sugar (outside)
pyruvate + sugar-P (inside)
The phosphoenolpyruvate: sugar phosphotransferase
system of E. coli. The following components are
involved in the system: phosphoenolpyruvate, PEP;
enzyme 1, E I; the low molecular weight heat-stable
protein, HPr; enzyme 11, E II,- and enzyme III, E III.
Simple comparison of transport systems
Items
Passive
diffusion
Facilitated
diffusion
Active
transport
Group
translocation
carrier
Non
Yes
Yes
Yes
transport
speed
Slow
Rapid
Rapid
Rapid
against
gradient
Non
Non
Yes
Yes
transport
molecules
No specificity
Specificity
Specificity
Specificity
metabolic
energy
No need
Need
Need
Need
Solutes
molecules
Not changed
Changed
Changed
Changed
proteins