* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download chapter11
Gene therapy wikipedia , lookup
Polycomb Group Proteins and Cancer wikipedia , lookup
Medical genetics wikipedia , lookup
Genetic drift wikipedia , lookup
Essential gene wikipedia , lookup
Human genetic variation wikipedia , lookup
Genetic engineering wikipedia , lookup
Pharmacogenomics wikipedia , lookup
Genetically modified crops wikipedia , lookup
Polymorphism (biology) wikipedia , lookup
Public health genomics wikipedia , lookup
Gene nomenclature wikipedia , lookup
Hardy–Weinberg principle wikipedia , lookup
Therapeutic gene modulation wikipedia , lookup
Gene desert wikipedia , lookup
Population genetics wikipedia , lookup
Behavioural genetics wikipedia , lookup
Minimal genome wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
Heritability of IQ wikipedia , lookup
Ridge (biology) wikipedia , lookup
X-inactivation wikipedia , lookup
Genome evolution wikipedia , lookup
History of genetic engineering wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Gene expression programming wikipedia , lookup
Genomic imprinting wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Genome (book) wikipedia , lookup
Gene expression profiling wikipedia , lookup
Dominance (genetics) wikipedia , lookup
Quantitative trait locus wikipedia , lookup
Impacts, Issues: The Color of Skin Like most human traits, skin color has a genetic basis; more than 100 gene products affect the synthesis and deposition of melanins Mendel’s Experimental Approach Mendel was a monk with training in plant breeding and mathematics He studied the garden pea (Pisum sativum), which breeds true for a number of traits Terms Used in Modern Genetics Genes • Heritable units of info about traits • Parents transmit genes to offspring • Each gene has a specific locus on a chromosome Diploid cells (chromosome number 2n) have pairs of genes on homologous chromosomes Terms Used in Modern Genetics A mutation is a permanent change in a gene • Alleles are different molecular forms of a gene A hybrid has nonidentical alleles for a trait • Offspring of a cross between two individuals that breed true for different forms of a trait are hybrids Terms Used in Modern Genetics Nonidentical alleles of a gene is heterozygous Identical alleles of a gene is homozygous Terms Used in Modern Genetics An allele is dominant if its effect masks the effect of a recessive allele paired with it • Capital letters (A) signify dominant alleles; lowercase letters (a) signify recessive alleles • Homozygous dominant (AA) • Homozygous recessive (aa) • Heterozygous (Aa) Terms Used in Modern Genetics Gene expression • Process by which info in a gene is converted to a structural or functional part • Expressed genes determine traits Terms Used in Modern Genetics Genotype • The particular alleles an individual carries Phenotype • An individual’s observable traits Terms Used in Modern Genetics P stands for parents, F for filial (offspring) F1: First generation offspring of parents F2: Second generation offspring of parents 11.1 Key Concepts Where Modern Genetics Started Gregor Mendel gathered the first experimental evidence of the genetic basis of inheritance His meticulous work gave him clues that heritable traits are specified in units The units, which are distributed into gametes in predictable patterns, were later identified as genes 11.2 Mendel’s Law of Segregation Garden pea plants inherit two “units” of information for a trait, one from each parent homozygous dominant parent homozygous recessive parent (chromosomes duplicated before meiosis) meiosis I meiosis II (gametes) (gametes) fertilization produces heterozygous offspring Fig. 11-5, p. 172 Calculating Probabilities Probability • A measure of the chance that a particular outcome will occur Punnett square • A grid used to calculate the probability of genotypes and phenotypes in offspring Construction of a Punnett Square Phenotype Ratios in a Monohybrid Experiment Phenotype Ratios in a Monohybrid Experiment F1 offspring aa True-breeding homozygous recessive parent plant a a A Aa Aa A Aa Aa Aa Aa AA True-breeding homozygous dominant parent plant Aa Aa B A cross between two plants that breed true for different forms of a trait produces F1 offspring that are identically heterozygous. Fig. 11-7b, p. 173 Mendel’s Law of Segregation Mendel observed a phenotype ratio of 3:1 in the F2 offspring of his monohybrid crosses • Consistent with the probability of the aa genotype in the offspring of a heterozygous cross (Aa x Aa) This is the basis of Mendel’s law of segregation • Diploid cells have pairs of genes on pairs of homologous chromosomes • The two genes of each pair separate during meiosis, and end up in different gametes 11.3 Mendel’s Law of Independent Assortment Mendel’s law of independent assortment • Many genes are sorted into gametes independently of other genes One of two possible alignments a Chromosome alignments at metaphase I: The only other possible alignment A Aa a A Aa a B Bb b b bB B b The resulting alignments at metaphase II: A A a a A A a a B B b b b b B B c Possible B combinations of alleles in gametes: A A a a A A a a AB B b ab b b Ab b B B aB Fig. 11-8, p. 174 • Dihybrid Cross: • In humans, there is a gene that controls formation (or lack thereof) of muscles in the tongue that allow people with those muscles to roll their tongues, while people who lack those muscles cannot roll their tongues. The ability to roll one’s tongue is dominant over non-rolling. The ability to taste certain substances is also genetically controlled. Let’s let R represent tongue-rolling, r represent a non-roller, T represent ability to taste PTC, and t represent non-tasting. Suppose a woman who is both a homozygous tongueroller and a non-PTC-taster marries a man who is a heterozygous tongue-roller and is a PTC taster, and they have children Draw the Punnett square that predicts what their children will be. If the man is both Rr and Tt (How do we know that?), he would be RrTt and so could produce gametes with either R or r and either T or t (one allele for each gene). There are two choices for the first trait (R or r). No matter which of those go into a given sperm, there are still two choices for the second trait (T or t). Woman RRtt Man RrTt RT Rt Rt Rt Rt Rt rT rt RRTt RRtt RrTt Rrtt Mendel’s Law of Independent Assortment Mendel’s dihybrid experiments showed that “units” specifying one trait segregated into gametes separately from “units” for other traits Exception: Genes that have loci very close to one another on a chromosome tend to stay together during meiosis Codominance in ABO Blood Types Codominance • Two nonidentical alleles of a gene are both fully expressed in heterozygotes, so neither is dominant or recessive • May occur in multiple allele systems Multiple allele systems • Genes with three or more alleles in a population • Example: ABO blood types Genotypes: Phenotypes (Blood type): AA BB or or AO AB BO OO A AB B O Fig. 11-10, p. 176 Incomplete Dominance Incomplete dominance • One allele is not fully dominant over its partner • The heterozygote’s phenotype is somewhere between the two homozygotes, resulting in a 1:2:1 phenotype ratio in F2 offspring Example: Snapdragon color • RR is red • Rr is pink • rr is white homozygous homozygous x parent (rr) parent (RR) heterozygous F1 offspring (Rr) A Cross a red-flowered with a white-flowered plant, and all of the F1 offspring will be pink. Fig. 11-11a, p. 176 B Cross two F1 plants, and the three phenotypes of the F2 offspring will occur in a 1:2 :1 ratio: R r RR Rr Rr rr R r Fig. 11-11b, p. 176 Epistasis Epistasis • Two or more gene products influence a trait • Typically, one gene product suppresses the effect of another Example: Coat color in dogs • Alleles B and b designate colors (black or brown) • Two recessive alleles ee suppress color Epistasis in Coat Colors Pleiotropy Pleiotropy • One gene product influences two or more traits • Example: Some tall, thin athletes have Marfan syndrome, a potentially fatal genetic disorder The Distance Between Genes The probability that a crossover event will separate alleles of two genes is proportional to the distance between those genes 11.6 Genes and the Environment Expression of some genes is affected by environmental factors such as temperature, altitude, or chemical exposure The result may be variation in traits Effects of Temperature on Gene Expression Enzyme tyrosinase, works at low temperatures 11.7 Complex Variations in Traits Individuals vary in some of their shared traits Many traits (such as eye color) show a continuous range of variation Continuous Variation Continuous variation • Traits with a range of small differences • The more factors that influence a trait, the more continuous the distribution of phenotype Bell curve • When continuous phenotypes are divided into measurable categories and plotted as a bar chart, they form a bell-shaped curve Continuous Variation and the Bell Curve Regarding the Unexpected Phenotype Phenotype results from complex interactions among gene products and the environment • Enzymes and other gene products control steps of most metabolic pathways • Mutations, interactions among genes, and environmental conditions may affect one or more steps 11.4-11.7 Key Concepts Variations on Mendel’s Theme Not all traits appear in Mendelian inheritance patterns • An allele may be partly dominant over a nonidentical partner, or codominant with it • Multiple genes may influence a trait; some genes influence many traits • The environments also influences gene expression